浏览全部资源
扫码关注微信
1.榆林学院 新能源学院,陕西 榆林 719000
2.榆林学院 化学与化工学院,陕西 榆林 719000
刘彪(2000—),硕士,研究方向为固态储氢,E-mail:2484624641@qq.com。
白海强(1992—),博士,副教授,研究方向为固态储氢,E-mail:baihaiqiang0107@163.com。
网络出版日期:2024-12-10,
收稿日期:2024-09-04,
修回日期:2024-10-01,
移动端阅览
刘彪,白海强,康玲等.固态储氢材料研究进展[J].低碳化学与化工,
LIU Biao,BAI Haiqiang,KANG Ling,et al.Research progress on solid hydrogen storage materials[J].Low-carbon Chemistry and Chemical Engineering,
刘彪,白海强,康玲等.固态储氢材料研究进展[J].低碳化学与化工, DOI:10.12434/j.issn.2097-2547.20240373.
LIU Biao,BAI Haiqiang,KANG Ling,et al.Research progress on solid hydrogen storage materials[J].Low-carbon Chemistry and Chemical Engineering, DOI:10.12434/j.issn.2097-2547.20240373.
随着能源问题不断恶化,氢气具有绿色环保、资源丰富和单位质量能量密度大等优势,成为最佳新能源之一。氢气储运是氢能推广的关键,其中固态储氢材料具有储氢量大、储氢密度大和安全性能好的优点,使其成为最有前景的储氢材料。综述了各类固态储氢材料(碳基储氢材料、有机多孔储氢材料、金属基储氢材料和配位氢化物储氢材料)的储氢性能以及目前国内外固态储氢材料的研究现状,展望了各类固态储氢材料的未来发展方向,以进一步提高固态储氢材料的储氢性能。固态储氢材料未来的研究方向将集中在合成多元多功能储氢材料、采用先进表征手段深入分析材料特性与储氢机理,以及完善行业标准和安全评价体系以推动产业发展。
With the deterioration of energy problems
hydrogen has become one of the best new energy due to its advantages of green environmental protection
abundant resources and high energy density per unit mass. Hydrogen storage and transportation is the key to hydrogen energy research popularization
among which solid hydrogen storage materials have the advantages of large hydrogen storage capacity
high hydrogen storage density and good safety performance
making them the most promising hydrogen storage materials. The hydrogen storage properties of various solid hydrogen storage materials (carbon-based hydrogen storage materials
organic porous hydrogen storage materials
metal-based hydrogen storage materials and coordination hydride hydrogen storage materials) and current research status of solid hydrogen storage materials at home and abroad were reviewed. The future development direction of various solid hydrogen storage materials was prospected to further improve the hydrogen storage performance of solid hydrogen storage materials. The future research directions of solid hydrogen storage materials will focus on synthesizing multi-functional hydrogen storage materials
using advanced characterization methods to deeply analyze their properties and hydrogen storage mechanisms and improving industry standards and safety evaluation system to promote industry development.
氢能固态储氢材料储氢性能
hydrogen energysolid hydrogen storage materialshydrogen storage performance
WIEDENHOFER D, LENZEN M, STEINBERGER J K. Energy requirements of consumption:Urban form, climatic and socio-economic factors, rebounds and their policy implications [J]. Energy Policy, 2013, 63(12): 696-707.
SALEHABADI A, DAWI E A, SABUR D A, et al. Progress on nano-scaled alloys and mixed metal oxides in solid-state hydrogen storage: An overview [J]. Journal of Energy Storage, 2023, 61(5): 106722.
STAFFELL I, SCAMMAN D, ABAD A V, et al. The role of hydrogen and fuel cells in the global energy system [J]. Energy and Environmental Science, 2019, 12(2): 463-491.
ANWAR N, SHAKEEL N, AHAMED M I. Green sustainable process for chemical and environmental engineering and science [M]. Amsterdam: Elsevier Inc, 2021: 205-223.
丁镠, 唐涛, 王耀萱, 等. 氢储运技术研究进展与发展趋势[J]. 天然气化工—C1化学与化工, 2022, 47(2): 35-40.
DING L, TANG T, WANG Y X, et al. Research progress and development trend of hydrogen storage and transportation technology [J]. Natural Gas Chemical Industry, 2022, 47(2): 35-40.
BARTHELEMY H. Hydrogen storage-industrial prospectives [J]. International Journal of Hydrogen Energy, 2012, 37(22): 17364-17372.
刘名瑞, 丁凯, 王唯, 等. 基于物理吸附储氢材料的研究进展[J]. 储能科学与技术, 2023, 12(6): 1804-1814.
LIU M R, DING K, WANG W, et al. Research progress of hydrogen storage materials based on physical adsorption [J]. Energy Storage Science and Technology, 2023, 12(6): 1804-1814.
CHEN Z J, KIRLIKOVALI K O, IDREES K B, et al. Porous materials for hydrogen storage [J]. Chem, 2022, 8(3): 693-716.
TAN Y K, TAO X M, OUYANG Y F, et al. Stable and 7.7wt% hydrogen storage capacity of Ti decorated IridaGraphene from first-principles calculations [J]. International Journal of Hydrogen Energy, 2024, 50: 738-748.
JIA Y, SUN C H, CHENG L N, et al. Destabilization of Mg—H bonding through nano-interfacial confinement by unsaturated carbon for hydrogen desorption from MgH2 [J]. Physical Chemistry Chemical Physics, 2013, 15(16): 5814-5820.
ZHENG S Q, LIM S S, FOO C Y, et al. A novel MOF-derived binary metal oxides and carbon nanocomposite for high-performance symmetric supercapacitor application [J]. Journal of Materials Science:Materials in Electronics, 2023, 34(21): 1578.
叶青. 全国首个固态储氢项目解决“ 绿电 ”与“ 绿氢 ”转换难题[N]. 科技日报, 2023-04-11(6).
YE Q. China’s first solid-state hydrogen storage project that solves the problem of “green electricity” and “green hydrogen” conversion [N]. Science and Technology Daily, 2023-04-11(6).
张秋雨, 任莉, 李映辉, 等. 镁基固态储氢材料研究进展[J]. 科技导报, 2022, 40(23): 6-23.
ZHANG Q Y, REN L, LI Y H, et al. Solid state Mg-based hydrogen storage materials: Research progress and future perspective [J]. Science and Technology Review, 2022, 40(23): 6-23.
DILLON A C, JONES K M, BEKKEDAHL T A, et al. Storage of hydrogen in single-walled carbon nanotubes [J]. Nature, 1997, 386: 377-379.
GHOSH S. PADMANABHAN V. Hydrogen storage in titanium-doped single-walled carbon nanotubes with stone wales defects [J]. Diamond and Related Materials, 2017, 77(8): 46-52.
ARIHARAN A, VISWANATHAN B, NANDHAKUMAR V. Nitrogen-incorporated carbon nanotube derived from polystyrene and pyrrole as hydrogen storage material [J]. International Journal of Hydrogen Energy, 2018, 43(10): 5077-5088.
KIDNAY A J, HIZA M J. Physical adsorption in cryogenic engineering [J]. Cryogenics, 1970, 10(4): 271-277.
詹亮, 李开喜, 朱星明, 等. 超级活性炭储氢性能研究[J]. 材料科学与工程, 2002, 20(1): 31-35.
ZHAN L, LI K X, ZHU M X, et al. The Preparation of super activated carbons and its properties for hydrogen storage [J]. Materials Science and Engineering, 2002, 20(1): 31-35.
BLANKENSHIP L S, BALAHMAR N, MOKAYA R. Oxygen-rich microporous carbons with exceptional hydrogen storage capacity [J]. Nature Communications, 2021, 12(1): 1545.
PEDICINI R, MAISANO S, CHIODO V, et al. Posidonia oceanica and wood chips activated carbon as interesting materials for hydrogen storage [J]. International Journal of Hydrogen Energy, 2020, 45(27): 14038-14047.
任娟, 刘其军, 张红. 多孔储氢材料研究现状评述[J]. 材料科学与工程学报, 2017, 35(1): 160-172.
REN J, LIU Q J, ZHANG H. Overviews on porous materials for hydrogen physical adsorption [J]. Journal of Materials Science and Engineering, 2017, 35(1): 160-172.
刘名瑞, 丁凯, 王唯, 等. 基于物理吸附储氢材料的研究进展[J]. 储能科学与技术, 2023, 12(6): 1804-1814.
LIU M R, DING K, WANG W, et al. Research progress of hydrogen storage materials based on physical adsorption [J]. Energy Storage Science and Technology, 2023, 12(6): 1804-1814.
LIU C,CHEN Y,WU C Z, et al. Hydrogen storage in carbon nanotubes revisited [J]. Carbon, 2010, 48(2): 452-455.
SANKARAN M, VISWANATHAN B, MURTHY S S. Boron substituted carbon nanotubes—How appropriate are they for hydrogen storage [J]. International Journal of Hydrogen Energy, 2008, 33(1): 393-403.
姜玉坤, 顾彬, 刘梦洋, 等. 一步法制备球形活性炭及其储氢性能研究[J]. 化工新型材料, 2024, 52(11):131-135.
JIANG Y K, GU B, LIU M Y, et al. Preparation of spherical activated carbon by one-step carbonization-activation method and its hydrogen storage performance study [J]. New Chemical Materials, 2024, 52(11):131-135.
BLANKENSHIP L S, BALAHMAR N, MOKAYA R. Oxygen-rich microporous carbons with exceptional hydrogen storage capacity [J]. Nature Communications, 2017, 8(1): 1545.
FARHA O K, YAZAYDIN A Ö, ERYAZICI I, et al. De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities [J]. Nature Chemistry, 2010, 2(11): 944-948.
LAN J H, CAO D P, WANG W C. Li-doped and nondoped covalent organic borosilicate framework for hydrogen storage [J]. The Journal of Physical Chemistry C, 2010, 114(7): 3108-3114.
XU J, LIU J, LI Z, et al. Optimized synthesis of Zr(IV) metal organic frameworks (MOFs-808) for efficient hydrogen storage [J]. New Journal of Chemistry, 2019, 43(10): 4092-4099.
FURUKAWA H, YAGHI O M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications [J]. Journal of the American Chemical Society, 2009, 131(25): 8875-8883.
Al OBEIDLI A, BEN SALAH H, AL MURISI M, et al. Recent advancements in MOFs synthesis and their green applications [J]. Hydrogen Energy, 2022, 47(4): 2561-2593.
ROWSELL J L C, MILLWARD A R, PARK K S, et al. Hydrogen sorption in functionalized metal-organic frameworks [J]. Journal of the American Chemical Society, 2004, 126(18): 5666-5667.
WONG-FOY A G, MATZGER A J, YAGHI O M. Exceptional H2 saturation uptake in microporous metal-organic frameworks [J]. Journal of the American Chemical Society, 2006, 128(11): 3494-3495.
ZHU Z W, ZHENG Q R. Investigation of cryo-adsorption hydrogen storage capacity of rapidly synthesized MOF-5 by mechanochemical methodInt [J]. Hydrogen Energy, 2023, 48(13): 5166-5174.
BASTOS N M, PATZSCHKE C, LANGE M, et al. Assessment of hydrogen storage by physisorption in porous materials [J]. Energy & Environmental Science, 2012, 5(8): 8294-8303.
REN J W, MUSYOKA N M, LANGMI H W, et al. A more efficient way to shape metal-organic framework (MOF) powder materials for hydrogen storage applications [J]. International Journal of Hydrogen Energy, 2015, 40(13): 4617-4622.
FURUKAWA H, YAGHI O M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications [J]. Journal of the American Chemical Society, 2009, 131(25): 8875-8883.
HAN Y, ZHANG L M, ZHAO Y C, et al. Microporous organic polymers with ketal linkages: Synthesis,characterization,and gas sorption properties [J]. ACS Applied Materials & Interfaces, 2013, 5(10): 4166-4172.
KALIDINDI S B, OH H, HIRSCHER M, et al. Metal@COFs: Covalent organic frameworks as templates for pdnanoparticles and hydrogen storage properties of Pd@COF-102hybrid material [J]. Chemistry—A European Journal, 2012, 18(35): 10848-10856.
ROSI N L, ECKERT J, EDDAOUDI M, et al. Hydrogen storage in microporous metal-organic frameworks [J]. Science, 2003, 300(5622): 1127-1129.
BAMBALAZA S E, LANGMI H W, MOKAYA R, et al. Compaction of a zirconium metal-organic framework (UiO-66) for high density hydrogen storage applications [J]. Journal of Materials Chemistry A, 2018, 6(46): 23569-23577.
YANG S J, CHO J H, NAHM K S, et al. Enhanced hydrogen storage capacity of Pt-loaded CNT@MOF-5 hybrid composites [J]. International Journal of Hydrogen Energy, 2010, 35(23): 13062-13067.
CHEN E Y, LIU Y C, ZHOU M, et al. Effects of structure on hydrogen adsorption in zeolitic imidazolate frameworks [J]. Chemical Engineering Science, 2012, 71(3): 178-184.
LUO L, ZHOU Y L, YAN W, et al. In-situ one-step synthesis of activated Carbon@MIL-101 (Cr) composites for hydrogen storage [J]. International Journal of Hydrogen Energy, 2022, 47(93): 39563-39571.
XIA L Z, WANG F L, LIU Q. Effects of substituents on the H2 storage properties of COF-320 [J]. Materials Letters, 2016, 162(1): 9-12.
SCHULZ R, HUOT J, LIANG G, et al. Recent developments in the applications of nanocrystalline materials to hydrogen technologies [J]. Materials Science and Engineering: A, 1999, 267(2): 240-245.
CAO W C, DING X, CHEN R R, et al. In-situ precipitation of ultrafine Mg2Ni particles in Mg-Ni-Ag metalfibers and their hydrogen storage properties [J]. Chemical Engineering Journal, 2023, 475(11): 146252.
SHAO H Y, ASANO K, ENOKI H, et al. Preparation and hydrogen storage properties of nanostructured Mg-Ni BCC alloys [J]. Journal of Alloys and Compounds, 2009, 477(1): 301-306.
ZANG J H, WANG S F, HU R R, et al. Ni, beyond thermodynamic tuning, maintains the catalytic activity of V species in Ni3(VO4)2 doped MgH2 [J]. Journal of Materials Chemistry A, 2021, 9(13): 8341-8349.
WANG P, TIAN Z H, WANG Z X, et al. Improved hydrogen storage properties of MgH2 using transition metal sulfides as catalyst [J]. International Journal of Hydrogen Energy, 2021, 46(53): 2946-2967
TIAN Z H, WANG Z X, YAO P F, et al. Hydrogen storage behaviors of magnesium hydride catalyzed by transition metal carbides [J]. International Journal of Hydrogen Energy, 2021, 46(80): 40203-40216.
WANG L X, HU Y W, LIN J U, et al. The hydrogen storage performance and catalytic mechanism of the MgH2-MoS2 composite [J]. Journal of Magnesium and Alloys, 2023, 11(7): 2530-2540.
YUAN Z M, QI Z, ZHAI T T, et al. Effects of La substitution on microstructure and hydrogen storage properties of Ti-Fe-Mn-based alloy prepared through melt spinning [J]. Transactions of Nonferrous Metals Society of China, 2021, 31(10): 3087-3095.
FENG Z Y, ZHONG H, YANG B, et al. Improved hydrogen storage properties of Ti23V40Mn37 alloy doped with Zr7Ni10 by rapid solidification [J]. Acta Metallurgica Sinica, 2023, 36(7): 1211-1219.
PATEL A K, SIEMIASZKO D, DWORECKA-WÓJCIK J, et al. Just shake or stir.about the simplest solution for the activation and hydrogenation of an FeTi hydrogen storage alloy [J]. International Journal of Hydrogen Energy, 2022, 47(8): 5361-5371.
ZHANG Y H, SHANG H W, GAO J L, et al. Effect of Sm content on activation capability and hydrogen storage performances of TiFe alloy [J]. International Journal of Hydrogen Energy, 2021, 46(48): 24517-24530.
NAYEBOSSADRI S, GREENWOOD C J, BOOK D. Evaluating some design criteria for TiFe-based ternary hydrogen storage alloys [J]. Journal of Alloys and Compounds, 2023, 947(25): 169456.
REILLY J J, WISWALL R H. Formation and properties of iron titanium hydride [J]. Inorganic Chemistry, 2002,13(1): 218-222.
LV P, HUOT J. Hydrogen storage properties of Ti0.95FeZr0.05TiFe0.95Zr0.5 and TiFeZr0.05 alloys [J]. International Journal of Hydrogen Energy, 2016, 41(47): 22128-22133.
ZADOROZHNYY V Y, KLYAMKIN S N, ZADOROZHNYY M Y, et al. Mechanical alloying of nanocrystalline intermetallic compound TiFe doped by aluminum and chromium [J]. Journal of Alloys and Compounds, 2014, 586(1): 56-60.
SHANG H W, ZHANG Y H, LI Y Q, et al. Investigation on gaseous and electrochemical hydrogen storage performances of as-cast and milled Ti1.1Fe0.9Ni0.1 and Ti1.09Mg0.01Fe0.9Ni0.1 alloys [J]. InternationaI Journal of Hydrogen Energy, 2018, 43(3): 1691-1701.
ALI W, HAO Z, LI Z, et al. Effects of Cu and Y substitution on hydrogen storage performance of TiFe0.86Mn0.1Y0.1-xCux [J]. International Journal of Hydrogen Energy, 2017, 42(26): 16620-12631.
CHEN X Y, CHEN R R, DING X, et al. Crystal structure and hydrogen storage properties of Ti-V-Mn alloys [J]. International Journal of Hydrogen Energy, 2018, 43(12): 6210-6218.
ZHOU P P, CAO Z M, XIAO X Z, et al. Development of Ti-Zr-Mn-Cr-V based alloys for high-density hydrogen storage [J]. Journal of Alloys and Compounds, 2021, 875: 160035.
LIU J J, LI K, CHENG H H, et al. New insights into the hydrogen storage performance degradation and Al functioning mechanism of LaNi5-xAlx alloys [J]. International Journal of Hydrogen Energy, 2017, 42(39): 24904-24914.
ZHU Z D, ZHU S, LU H Q, et al. Stability of LaNi5-xCoxalloys cycled in hydrogen Part 1. Evolution in gaseous hydrogen storage performance [J]. International Journal of Hydrogen Energy, 2019, 44(29): 15159-15172.
张怀伟, 郑鑫遥, 刘洋, 等. 稀土元素在储氢材料中的应用进展[J]. 中国稀土学报, 2016, 34(1): 1-10.
ZHANG H W, ZHENG X Y, LIU Y, et al. Application and development of rare earth-based hydrogen storage materials [J]. Journal of the Chinese Society of Rare Earths, 2016, 34(1): 1-10.
ZHANG X, LIU Y F, REN Z H, et al. Realizing 6.7wt% reversible storage of hydrogen at ambient temperature with nonconfined ultrafine magnesium hydrides [J]. Energy & Environmental Science, 2021, 14(4): 2302-2313.
ZHANG X Z, YANG R, QU J L, et al. The synthesis and hydrogen storage properties of pure nanostructured Mg2FeH6 [J]. Nanotechnology, 2010, 21(9): 95706.
FU Y K, ZHANG L, LI Y, et al. Effect of ternary transition metal sulfide FeNi2S4 on hydrogen storage performance of MgH2 [J]. Journal of Magnesium and Alloys, 2023, 11(8): 2927-2938.
BALCERZAK M. Structure and hydrogen storage properties of mechanically alloyed Ti-V alloys [J]. International Journal of Hydrogen Energy, 2017, 42(37): 23698-23707.
YU X B, WU Z, XIA B J, et al. Enhancement of hydrogen storage capacity of Ti-V-Cr-Mn BCC phase alloys [J]. Journal of Alloys and Compounds, 2004, 372(1): 272-277.
徐丽, 盛鹏, 李吉刚, 等. Co和Fe的添加对(TiZr)1.1Cr2合金结构和吸氢性能的调控[J]. 功能材料, 2017, 48(10): 10009-10012.
XU L, SHENG P, LI J G, et al. Addition of Co, Fe to regulate the structure and hydrogen storage property of (TiZr)1.1Cr2 alloy [J]. Journal of Functional Materials, 2017, 48(10): 10009-10012.
马通祥, 高雷章, 胡蒙均, 等. 固体储氢材料研究进展[J]. 功能材料, 2018, 49(4): 4001-4006.
MA T X, GAO L Z, HU M J, et al. Research progress of solid hydrogen storage materials [J]. Functional Materials, 2018, 49(4): 4001-4006.
刘彧儒, 苑慧萍, 蒋利军, 等. Ce替代对La-Y-Ni基稀土储氢合金结构和储氢性能的影响[C]//中国稀土学会第四届青年学术会议摘要集. 赣州: 中国稀土学会, 2023: 208.
LIU Y R, YUAN H P, JIANG L J, et al. Effect of Ce substitution on structure and hydrogen storage properties of La-Y-Ni-based rare earth hydrogen storage alloys [C]//Abstracts of the 4th Youth Academic Conference of the Chinese Society of Rare Earth. Ganzhou: Chinese Society of Rare Earths, 2023: 208.
BOGDANOVIĆ B, SCHWICKARDI M. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials [J]. Journal of Alloys and Compounds, 1997, 253/254: 1-9.
LI L, WANG Y, QIU F Y, et al. Reversible hydrogen storage properties of NaAlH4 enhanced with TiN catalyst [J]. Journal of Alloys and Compounds, 2013, 566: 137-141.
ZHANG X, ZHANG X L, REN Z H, et al. Amorphouscarbon-supported ultrasmall TiB2 nanoparticles with high catalytic activity for reversible hydrogen storage in NaAlH4 [J]. Frontiers in Chemistry, 2020, 15(8): 419.
SAZELEE N A, YAHYA M S, ALI N A, et al. Enhancement of dehydrogenation properties in LiAlH4 catalysed by BaFe [J]. Journal of Alloys and Compounds, 2020, 835: 155183.
WEI S, LIU J X, XIA Y P, et al. Enhanced hydrogen storage properties of LiAlH4 by excellent catalytic activity of XTiO3@h-BN (X = Co,Ni) [J]. Advanced Functional Materials, 2022, 32(13): 2110180.
XIA Y P, ZHANG H Z, SUN Y J, et al. Dehybridization effect in improved dehydrogenation of LiAlH4 by doping with two-dimensional Ti3C2 [J]. Materials Today Nano, 2019, 8: 100054.
YE J K, XIA G L, YU X B. In-situ constructed destabilization reaction of LiBH4 wrapped with graphene toward stable hydrogen storage reversibility [J]. Materials Today Energy, 2021, 22: 100885.
LI Z L, GAO M X, WANG S, et al. In-situ introduction of highly active TiO for enhancing hydrogen storage performance of LiBH4 [J]. Chemical Engineering Journal, 2022, 433(1): 134485.
AU M, JURGENSEN A, ZEIGLER K. Modified lithium borohydrides for reversible hydrogen storage [J]. The Journal of Physical Chemistry B, 2006, 110(51): 26482-26487.
ZHANG X, ZHANG W X, ZHANG L C, et al. Single-pot solvothermal strategy toward support-free nanostructured LiBH4 featuring 12wt% reversible hydrogen storage at 400 ℃ [J]. Chemical Engineering Journal, 2022, 428: 132566.
PINKERTON F E, MEISNER G P, MEYER M S, et al. Hydrogen desorption exceeding ten weight percent from the new quaternary hydride Li3BN2H8 [J]. The Journal of Physical Chemistry B, 2005, 109(1): 6-8.
WEI J, LENG H Y, LI Q, et al. Improved hydrogen storage properties of LiBH4 doped Li-N-H system [J]. International Journal of Hydrogen Energy, 2014, 39(25): 13609-13615.
ICHIKAWA T, HANADA N, ISOBE S, et al. Hydrogen storage properties in Ti catalyzed Li-N-H system [J]. Journal of Alloys and Compounds, 2004, 404/405/406:435-438.
BOGDANOVIĆ B, SCHWICKARDI M. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials [J]. Journal of Alloys and Compounds, 1997, 253/254: 1-9.
BOGDANOVIĆ B, FELDERHOFF M, POMMERIN A, et al. Advanced hydrogen-storage materials based on Sc, Ce, and Pr-doped NaAlH4 [J]. Advanced Materials, 2006, 18(9): 1198-1201.
ZÜTTEL A, WENGER P, RENTSCH S, et al. LiBH4 a new hydrogen storage material [J]. Journal of Power Sources, 2003, 118(1/2): 1-7.
陈君儿, 熊智涛, 吴国涛, 等. 配位氢化物储氢材料Mg(BH4)2的研究进展[J]. 材料科学与工程学报, 2011, 29(4): 639-646.
CHEN J E, XIONG Z T, WU G T, et al. Review on hydrogen storage in Mg(BH4)2 [J]. Journal of Materials Science and Engineering, 2011, 29(4): 639-646.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构