浏览全部资源
扫码关注微信
北京航天试验技术研究所 航天液体推进剂研究中心,北京 100074
陈志强(1990—),博士,工程师,研究方向为能源催化,E-mail:chenzq_101@126.com。
方涛(1979—),博士,研究员,研究方向为推进剂化学与技术,E-mail:fangtao7217@163.com。
纸质出版日期:2024-09-25,
收稿日期:2024-06-04,
修回日期:2024-08-11,
移动端阅览
陈志强,汪丽,丁明伟等.封装型α-Fe2O3@SiO2催化剂的制备及其催化正仲氢转化性能评价[J].低碳化学与化工,2024,49(09):106-112.
CHEN Zhiqiang,WANG Li,DING Mingwei,et al.Preparation of encapsulated α-Fe2O3@SiO2 catalyst and evaluation of its catalytic performance in orthohydrogen-parahydrogen conversion[J].Low-carbon Chemistry and Chemical Engineering,2024,49(09):106-112.
陈志强,汪丽,丁明伟等.封装型α-Fe2O3@SiO2催化剂的制备及其催化正仲氢转化性能评价[J].低碳化学与化工,2024,49(09):106-112. DOI: 10.12434/j.issn.2097-2547.20240248.
CHEN Zhiqiang,WANG Li,DING Mingwei,et al.Preparation of encapsulated α-Fe2O3@SiO2 catalyst and evaluation of its catalytic performance in orthohydrogen-parahydrogen conversion[J].Low-carbon Chemistry and Chemical Engineering,2024,49(09):106-112. DOI: 10.12434/j.issn.2097-2547.20240248.
正氢和仲氢(以下简称“正仲氢”)转化反应影响氢气的低温液化过程,是液氢贮存和运输过程中的关键步骤。传统铁基催化剂面临活性物种聚集长大、耐水性不足和高温耐受性差等问题。为解决以上问题,通过将
α
-Fe
2
O
3
封装于具有丰富孔道结构的无定形二氧化硅中,制备了催化正仲氢转化的高性能封装型
α
-Fe
2
O
3
@SiO
2
催化剂。利用 SEM、XRD和H
2
-TPR等表征手段探究了封装型结构对催化剂表面形貌、晶体结构以及还原性能等的影响,利用性能测试装置评价了催化剂催化性能,分析并总结了封装型结构与催化剂催化性能之间的关系。结果表明,封装型结构可优化催化剂孔道结构,调控活性位点电子性质,提升催化剂结构稳定性和高温耐受性,进而提升催化剂催化性能。当体积空速为600 min
-1
时,在
α
-Fe
2
O
3
@SiO
2
和
α
-Fe
2
O
3
/SiO
2
(不具备封装型结构)的作用下,装置出口处仲氢体积
分数分别为41.8%和37.6%,正氢转化率分别为22.4%和16.8%,表明封装型铁基催化剂在正仲氢转化领域具备较高的应用潜力。
Orthohydrogen and parahydrogen (hereinafter referred to as “orthohydrogen-parahydrogen”) conversion reaction affects the liquefaction process of hydrogen at low temperature and is an important step in the storage and transportation of liquid hydrogen. Traditional iron-based catalysts face problems such as the aggregative growth of active species
the insufficient resistance ability of water and the poor tolerance ability of high temperature. To solve above problems
α-
Fe
2
O
3
was encapsulated into amorphous silica with abundant pore structures
and the encapsulated
α
-Fe
2
O
3
@SiO
2
catalyst with high catalytic performance in orthohydrogen-parahydrogen conversion was prepared. SEM、XRD and H
2
-TPR were used to investigate the effects of the encapsulated structure on surface morphologies
crystal structures and reduction abilities of catalysts. The catalytic performances of catalysts were evaluated by test device
and the relationship between the encapsulated structure and catalytic performance was analyzed and summarized. The results show that the encapsulated structure can optimize the pore structure of the catalyst
regulate the electronic property of active sites
improve the structural stability and high temperature tolerance ability of the catalyst
and thereby improve the catalytic performance. When the volume space velocity is 600 min
-1
under the action of
α
-Fe
2
O
3
@SiO
2
and
α
-Fe
2
O
3
/SiO
2
(without encapsulation)
parahydrogen volume fractions at the outlet of the device are 41.8% and 37.6%
and the orthohydrogen conversion rates are 22.4% and 16.8%
respectively
indicating that encapsulated iron-based catalysts have high potential for application in the field of orthohydr
ogen-parahydrogen conversion.
正仲氢转化封装催化剂电子性质
orthohydrogen-parahydrogen conversionencapsulationcatalystselectronic property
陈红, 杨鑫磊, 王晓月. 航空机载液氢储罐绝热性能及轻量化研究[J]. 航空科学技术, 2024, 35(1): 36-46.
CHEN H,YANG X L,WANG X Y. Study on adiabatic performance and lightweight of airborne liquid hydrogen storage tank [J]. Aeronautical Science & Technology, 2024, 35(1): 36-46.
YU J X, ZHANG X Y, JIANG R K, et al. Iron based catalysts with oxygen vacancies obtained by facile pyrolysis for selective hydrogenation of nitrobenzene [J]. ACS Applied Materials & Interfaces, 2024, 16(7), 8603-8615.
ZHU X Y, LEE J H, KIM K H, et al. Computational design of vapor-cooled shield structure for liquid hydrogen storage tank [J]. Journal of Mechanical Science and Technology, 2024, 38(3): 1575-1583.
LIU W, WAN Y M, XIONG Y L, et al. Green hydrogen standard in China: Standard and evaluation of low-carbon hydrogen, clean hydrogen, and renewable hydrogen [J]. International Journal of Hydrogen Energy, 2022, 47(58): 24584-24591.
ZHAO Y X, GONG M Q, ZHOU Y, et al. Thermodynamics analysis of hydrogen storage based on compressed gaseous hydrogen, liquid hydrogen and cryo-compressed hydrogen [J]. International Journal of Hydrogen Energy, 2019, 44(31): 16833-16840.
LI X F, MA X F, ZHANG J, et al. Review of hydrogen embrittlement in metals: Hydrogen diffusion, hydrogen characterization, hydrogen embrittlement mechanism and prevention [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 759-773.
PEDROW B P, KRISHNA S K M, SHOEMAKE E D, et al. Parahydrogen-orthohydrogen conversion on catalyst loaded scrim for vapor-cooled shielding of cryogenic storage vessels [J]. Journal of Thermophysics and Heat Tranfer, 2021, 35(1):142-151.
刁希文, 滕越, 赵骞, 等. 正仲氢催化转化性能低温测试装置设计[J]. 低温与超导, 2022, 50(2): 84-88.
DIAO X W, TENG Y, ZHAO Q, et al. Design of cryogenic test device for catalytic conversion performance of ortho-parahydrogen [J]. Cryogenics & Superconductivity, 2022, 50(2): 84-88.
WANG K, XIA G J, LIU T H, et al. Anisotropic growth of one-dimensional carbides in single-walled carbon nanotubes with strong interaction for catalysis [J]. Journal of the American Chemical Society, 2023, 145(23): 12760-12770.
HE Q Q, XU T F, LI J J, et al. Confined PdMo ultrafine nanowires in CNTs for superior oxygen reduction catalysis [J]. Advanced Energy Materials, 2022, 12(26): 2200849.
杨晓阳, 杨昌乐. 正仲氢转化催化剂性能研究[J]. 化学推进剂与高分子材料, 2018, 16(3): 79-82.
YANG X Y, YANG C L. Study on performance of orthohydrogen-parahydrogen converting catalyst [J]. Chemical Propellants & Polymeric Materials, 2018, 16(3): 79-82.
SU Y Q, XU H T, WANG J J, et al. Nanorattle Au@PtAg encapsulated in ZIF-8 for enhancing CO2 photoreduction to CO [J]. Nano Research, 2019, 12(3): 625-630.
韩玉, 王亚斌, 丁秀萍. 大孔树枝状二氧化硅纳米球的合成与表征[J]. 功能材料, 2020, 51(6): 6133-6137.
HAN Y, WANG Y B, DING X P. Synthesis and characterization of dendritic mesoporous silica nanosperes (DMSNs) with enlarged pore size [J]. Journal of Functional Materials, 2020, 51(6): 6133-6137.
陈丽娟, 黄慧. α-FeOOH和α-Fe2O3纳米棒的制备及其对高氯酸铵热分解的催化作用[J]. 机械工程材料, 2023, 47(4): 28-32.
CHEN L J, HUANG H. Preparation of α-FeOOH and α-Fe2O3 nanorods and their catalytic effect on thermal decomposition of ammonium perchlorate [J]. Materials for Mechanical Engineering, 2023, 47(4): 28-32.
WANG N, SUN Q M, YU J H. Ultrasmall metal nanoparticles confined within crystalline nanoporous materials: A fascinating class of nanocatalysts [J]. Advanced Materials, 2019, 31(1): 1803966.
孟垂举, 张亮, 汪彬, 等. 仲-正氢转化及释冷效应利用研究进展[J]. 低温与超导, 2022, 50(6): 71-83.
MENG C J, ZHANG L, WANG B, et al. Research progress of parahydrogen to orthohydrogen conversion and utilization of cooling effect [J]. Cryogenics & Superconductivity, 2022, 50(6): 71-83.
王国平, 张玙, 胡忠军, 等. CSNS正仲氢转化及其组分测量的研究[J]. 工程热物理学报, 2014, 35(8): 1475-1478.
WANG G P, ZHANG Y, HU Z J, et al. Study of ortho-para hydrogen conversion and concentration determination [J]. Journal of Engineering Thermophysics, 2014, 35(8): 1475-1478.
代盟, 刘志帆, 张启勇. 基于双重介质模型的正仲氢转化器流动规律研究[J]. 低温与超导, 2023, 51(4): 33-39.
DAI M, LIU Z F, ZHANG Q Y. Study on the fluid flow of ortho-parahydrogen in the converter based on double-porosity model [J]. Cryogenics & Superconductivity, 2023, 51(4): 33-39.
王昊成, 杨敬瑶, 董学强, 等. 10 t/d级氢液化装置流程热力分析与优化[J]. 化工学报, 2022, 73(11): 5106-5117.
WANG H C, YANG J Y, DONG X Q, et al. Thermodynamic analysis and optimization of 10 t/d hydrogen liquefaction process [J]. CIESC Journal, 2022, 73(11): 5106-5117.
ZHAO M, SUN J C, LI X H, et al. Synthesis of light olefins from syngas catalyzed by supported iron-based catalysts on alumina [J]. Catalysis Today, 2022, 402: 300-309.
MEDICUS M, METTKE J, MERKEL M, et al. Development and up-scaling of iron-based catalysts for Fischer-Tropsch synthesis of higher alcohols [J]. ChemCatChem, 2023, 15(19): e202300572.
YANG H Y, DANG Y R, CUI X, et al. Selective synthesis of olefins via CO2 hydrogenation over transition-metal-doped iron-based catalysts [J]. Applied Catalysis B: Environmental, 2023, 321: 122050.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构