浏览全部资源
扫码关注微信
1.浙江工业大学 化学工程学院 催化反应工程研究所,浙江 杭州 310014
2.浙江环境科技有限公司,浙江 杭州 311121
熊峰(1999—),硕士研究生,研究方向为分子筛活性位调控及其低浓度气体捕集性能,E-mail:2112101504@zjut.edu.cn。
柯权力(1990—),博士,讲师,研究方向为分子筛合成和气体分离技术,E-mail:quanlike@zjut.edu.cn;
卢晗锋(1977—),博士,教授,研究方向为环境催化和大气污染催化控制技术,E-mail:luhf@zjut.edu.cn。
纸质出版日期:2024-11-25,
收稿日期:2024-06-01,
修回日期:2024-07-15,
移动端阅览
熊峰,柯权力,卢梅等.高硅MFI分子筛孔道调控及其乙烷/乙烯吸附分离性能研究[J].低碳化学与化工,2024,49(11):97-103.
XIONG Feng,KE Quanli,LU Mei,et al.Study on pore regulation of high-silica MFI zeolites and their ethane/ethylene adsorption separation performances[J].Low-carbon Chemistry and Chemical Engineering,2024,49(11):97-103.
熊峰,柯权力,卢梅等.高硅MFI分子筛孔道调控及其乙烷/乙烯吸附分离性能研究[J].低碳化学与化工,2024,49(11):97-103. DOI: 10.12434/j.issn.2097-2547.20240243.
XIONG Feng,KE Quanli,LU Mei,et al.Study on pore regulation of high-silica MFI zeolites and their ethane/ethylene adsorption separation performances[J].Low-carbon Chemistry and Chemical Engineering,2024,49(11):97-103. DOI: 10.12434/j.issn.2097-2547.20240243.
借助固体吸附分离技术可获得高纯度乙烯,对提高乙烯产品质量有重要意义。采用表面修饰策略对Mn掺杂高硅MFI分子筛(H-MFI-Mn)进行修饰分别制得P修饰H-MFI-Mn(H-MFI-Mn-P)和HCOOH修饰H-MFI-Mn(H-MFI-Mn-COOH和H-MFI-Mn-P-COOH)。采用XRD、SEM和N
2
吸/脱附等对所得分子筛进行了表征。在混合气体中(
V
(乙烯):
V
(乙烷) = 50:50)对所得分子筛的乙烷/乙烯吸附分离性能进行了评价,并采用UV-Vis和XPS对所得分子筛的乙烷/乙烯吸附分离机理进行了分析。结果表明,H-MFI-Mn-P-COOH的微孔孔径(0.68 nm)和平均孔径(2.70 nm)较H-MFI-Mn的孔径(0.55 nm)和平均孔径(1.61 nm)明显增大。与H-MFI-Mn的比表面积(446 m
2
/g)相比,H-MFI-Mn-P、H-MFI-Mn-COOH和H-MFI-Mn-P-COOH的比表面积(400 m
2
/g左右)均有所减小。H-MFI-Mn-P-COOH表现出较好的乙烷/乙烯吸附分离性能,其乙烷动态平衡吸附容量为1 mmol/g,乙烷/乙烯动态分离选择性为2.08。与H-MFI-Mn相比,H-MFI-Mn-P-COOH中Mn
3+
和Mn
2+
在总Mn离子中的占比较高,说明P修饰+ HCOOH修饰可削弱分子筛结构中Mn
δ
+
物种的电子转移性能,进而抑制H-MFI-Mn-P-COOH的乙烯吸附性能。
High purity ethylene can be obtained by the solid adsorption separation technology
which is of great significance to improve the quality of ethylene products. Mn-doped high-silica MFI zeolite (H-MFI-Mn) were modified by surface modification strategy to obtain P-modified H-MFI-Mn (H-MFI-Mn-P) and HCOOH-modified H-MFI-Mn (H-MFI-Mn-COOH and H-MFI-Mn-P-COOH)
respectively. The prepared zeolites were characterized by XRD
SEM and N
2
adsorption/desorption
etc. The ethane/ethylene adsorption separation performances of prepar
ed zeolites were evaluated in mixed gas (
V
(ethane):
V
(ethylene) = 50:50). And the ethane/ethylene adsorption separation mechanisms of prepared zeolites were analyzed by UV-Vis and XPS. The results show that the micropore size (0.68 nm) and average pore size (2.70 nm) of H-MFI-Mn-P-COOH are significantly larger than the micropore size (0.55 nm) and average pore size (1.61 nm) of H-MFI-Mn. Compared with the specific surface area of H-MFI-Mn (446 m
2
/g)
the specific surface areas (about 400 m
2
/g) of H-MFI-Mn-P
H-MFI-Mn-COOH and H-MFI-Mn-P-COOH decrease. H-MFI-Mn-P-COOH shows better ethane/ethylene adsorption separation performance with ethane dynamic equilibrium adsorption capacity of 1 mmol/g and ethane/ethylene dynamic separation selectivity of 2.08. Compared with H-MFI-Mn
Mn
3+
and Mn
2+
in H-MFI-Mn-P-COOH accounted for higher proportions in total Mn ions
indicating that P-modification + HCOOH-modification can weaken the electron transfer performance of Mn
δ
+
species in the zeolite structure
and then inhibit the ethylene adsorption performance of H-MFI-Mn-P-COOH.
高硅MFI分子筛乙烷/乙烯吸附分离表面修饰
high-silica MFI zeolitesethane/ethylene adsorption separationsurface modification
DEVOS J, BOLS M L, PLESSERS D, et al. Synthesis-structure-activity relations in Fe-CHA for C—H activation: Control of Al distribution by interzeolite conversion [J]. Chemistry of Materials, 2020, 32(1): 273-285.
LI L B, LIN R B, KRISHNA R, et al. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites [J]. Science, 2018, 362(6413): 443-446.
SHOLL D S, LIVELY R P. Seven chemical separations to change the world [J]. Nature, 2016, 532(7600): 435-437.
WU H X, CHEN Y W, LV D, et al. An indium-based ethane-trapping MOF for efficient selective separation of C2H6/C2H4 mixture [J]. Separation and Purification Technology, 2019, 212: 51-56.
YU C, GUO Z D, YANG L F, et al. A robust metal-organic framework with scalable synthesis and optimal adsorption and desorption for energy-efficient ethylene purification [J]. Angewandte Chemie International Edition, 2023, 62(16): e202218027.
BAO Z B, CHANG G G, XING H B, et al. Potential of microporous metal-organic frameworks for separation of hydrocarbon mixtures [J]. Energy & Environmental Science, 2016, 9(12): 3612-3641.
PARK H B, KAMCEV J, ROBESON L M, et al. Maximizing the right stuff: The trade-off between membrane permeability and selectivity [J]. Science, 2017, 356(6343): 1138-1148.
YANG Y S, LI L B, LIN R B, et al. Ethylene/ethane separation in a stable hydrogen-bonded organic framework through a gating mechanism [J]. Nature Chemistry, 2021, 13(10): 933-939.
FU D L, DAVIS M E. Carbon dioxide capture with zeotype materials [J]. Chemical Society Reviews, 2022, 51(22): 9340-9370.
YANG L, WANG Y, CHEN Y, et al. Microporous metal-organic framework with specific functional sites for efficient removal of ethane from ethane/ethylene mixtures [J]. Chemical Engineering Journal, 2020, 387: 124137.
LI S M, JIANG H C, NI Q L, et al. A quad-core Zn(II) cluster-based microporous metal-organic framework with nonpolar cages for efficient removal of ethane from ethane/ethylene mixtures [J]. Separation and Purification Technology, 2024, 334: 125972.
BERECIARTUA P J, CANTÍN Á, CORMA A, et al. Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene [J]. Science, 2017, 358(6366): 1068-1071.
张凯博, 沈佳新, 李玉霞, 等. Y沸石中Cu(Ⅰ)的可控构筑及其乙烯/乙烷吸附分离性能研究[J]. 化工学报, 2024, 75(4): 1607-1615.
ZHANG K B, SHEN J X, LI Y X, et al. Controllable construction of Cu(Ⅰ) in Y zeolite for adsorptive separation of ethylene/ethane [J]. CIESC Journal, 2024, 75(4): 1607-1615.
LIU J Q, SHANG H, YANG J F, et al. Novel zeolite/carbon monolith adsorbents for efficient CH4/N2 separation [J]. Chemical Engineering Journal, 2021, 426: 130163.
WANG S M, SHIVANNA M, ZHENG S T, et al. Ethane/ethylene separations in flexible diamondoid coordination networks via an ethane-induced gate-opening mechanism [J]. Journal of the American Chemical Society, 2024, 146(6): 4153-4161.
YANG J F, LI J M, WANG W, et al. Adsorption of CO2, CH4, and N2 on 8-, 10-, and 12-membered ring hydrophobic microporous high-silica zeolites: DDR, silicalite-1, and beta [J]. Industrial & Engineering Chemistry Research, 2013, 52(50): 17856-17864.
YANG J F, ZHAO Q, XU H, et al. Adsorption of CO2, CH4, and N2 on gas diameter grade ion-exchange small pore zeolites [J]. Journal of Chemical & Engineering Data, 2012, 57(12): 3701-3709.
LIU J Q, TANG X, LIANG X W, et al. Superhydrophobic zeolitic imidazolate framework with suitable SOD cage for effective CH4/N2 adsorptive separation in humid environments [J]. AIChE Journal, 2022, 68(5): e17589.
LI Y, WANG Y, BAI H H, et al. Adjusting the Si/Al ratio of high silica zeolites for efficient ethane and ethylene separation [J]. Separation and Purification Technology, 2024, 336: 126154.
PARK J, CHO K H, KIM J C, et al. Design of olefin-phobic zeolites for efficient ethane and ethylene separation [J]. Chemistry of Materials, 2023, 35(5): 2078-2087.
ALY E, ZAFANELLI L F A S, HENRIQUE A, et al. Separation of CO2/N2 in ion-exchange binder-free beads of zeolite NaY for post-combustion CO2 capture [J]. Separation and Purification Technology, 2024, 348: 127722.
PENG L, DUAN Z F, CEN S M, et al. Tungsten-doped high-silica CHA zeolite membranes with improved hydrophobicity for CO2 separation [J]. Separation and Purification Technology, 2024, 342: 126922.
ZHOU Y, ZHANG J L, WANG L, et al. Self-assembled iron-containing mordenite monolith for carbon dioxide sieving [J]. Science, 2021, 373(6552): 315-320.
LIAO P Q, ZHANG W X, ZHANG J P, et al. Efficient purification of ethene by an ethane-trapping metal-organic framework [J]. Nature Communications, 2015, 6(1): 8697.
KUMAR K V, GADIPELLI S, WOOD B, et al. Characterization of the adsorption site energies and heterogeneous surfaces of porous materials [J]. Journal of Materials Chemistry A, 2019, 7(17): 10104-10137.
KE Q L, XIONG Y D, LU M, et al. Enhanced toluene adsorption over carbon-silica composite with promoted microporosity and moisture resistance [J]. Separation and Purification Technology, 2024, 344: 127268.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构