浏览全部资源
扫码关注微信
1.兰州大学 材料与能源学院,甘肃 兰州 730000
2.兰州大学 化学化工学院 功能有机分子化学国家重点实验室,甘肃 兰州 730000
3.中国科学院 兰州化学物理研究所 羰基合成与选择氧化国家重点实验室,甘肃 兰州 730000
杨军(1994—),硕士研究生,研究方向为多相催化,E-mail:yjun2023@lzu.edu.cn。
李华(1976—),博士,高级工程师,硕士研究生导师,研究方向为能源转化与催化,E-mail:huali@lzu.edu.cn;
徐彩玲(1977—),博士,教授,博士研究生导师,研究方向为材料电化学、能源转化与催化,E-mail:xucl@lzu.edu.cn;
吴剑峰(1985—),博士,副研究员,博士研究生导师,研究方向为多相催化,E-mail:wjf@licp.cas.cn。
纸质出版日期:2024-11-25,
收稿日期:2024-05-27,
修回日期:2024-07-02,
移动端阅览
杨军,梁丽烨,李华等.稀土元素改性CO2加氢制甲醇催化剂的研究进展[J].低碳化学与化工,2024,49(11):1-11.
YANG Jun,LIANG Liye,LI Hua,et al.Research progress on catalysts modified by rare earth elements for CO2 hydrogenation to methanol[J].Low-carbon Chemistry and Chemical Engineering,2024,49(11):1-11.
杨军,梁丽烨,李华等.稀土元素改性CO2加氢制甲醇催化剂的研究进展[J].低碳化学与化工,2024,49(11):1-11. DOI: 10.12434/j.issn.2097-2547.20240236.
YANG Jun,LIANG Liye,LI Hua,et al.Research progress on catalysts modified by rare earth elements for CO2 hydrogenation to methanol[J].Low-carbon Chemistry and Chemical Engineering,2024,49(11):1-11. DOI: 10.12434/j.issn.2097-2547.20240236.
化石燃料对人类社会具有重要作用,然而CO
2
大量排放对全球气候产生了负面影响。CO
2
加氢制甲醇不仅能够有效降低大气中CO
2
浓度,还提供了高附加值化学品。非贵金属(Cu)基、贵金属(Pd)基和双金属氧化物等一系列催化剂已经被运用于CO
2
加氢制甲醇,然而传统Cu基催化剂存在反应条件苛刻、活性位点易烧结和团聚的问题,Pd基催化剂抗烧结性能较好且在低温下有优异的反应活性,但贵金属对CO
2
的吸附较弱,CO
2
在低温下很难被活化。双金属氧化物催化剂(以ln
2
O
3
基和ZrO
2
基催化剂为主)具有优异的催化性能和良好的稳定性,其中单独的In
2
O
3
自身稳定性较差,且In
2
O
3
基催化剂的活性相 In
2
O
3-
x
容易被过度还原形成金属 In 而失活,需要掺杂其他改性元素进一步提高其稳定性和活性;单独的ZrO
2
催化性能不理想,需要通过与其他金属或金属氧化物相互作用提升其催化性能。稀土元素(La、Ce和Y)作为改性元素或其氧化物作为催化剂载体,能有效调节催化剂的表面酸碱性、活性相分散度和比表面积以及金属-载体相互作用等,从而改善催化剂对CO
2
的吸附和活化性能,增大产物选择性,并提高催化剂稳定性。综述了La、Ce和Y对Cu基、Pd基和双金属氧化物催化剂的改性作用,以期为稀土元素改性CO
2
加氢制甲醇催化剂的研发和应用提供参考。
Fossil fuels have an important contribution to human society
but the large amount of CO
2
emissions has a negative impact on the global climate. CO
2
hydrogenation to methanol not only effectively reduces the concent
ration of CO
2
in the atmosphere
but also provides high value-added chemicals. A range of non-precious metal (Cu)-based
precious metal (Pd)-based and bimetallic oxide catalysts have been used for CO
2
hydrogenation to methanol. However
conventional Cu-based catalysts suffer from harsh reaction conditions and easy sintering as well as agglomeration of active sites. Pd-based catalysts are more resistant to sintering and have excellent reactivity at low temperatures
but noble metals have weak adsorption of CO
2
and CO
2
is difficult to be activated at low temperatures. Bimetallic oxide catalysts (mainly ln
2
O
3
-based and ZrO
2
-based catalysts) have excellent catalytic performance and good stability. Among which
the stability of In
2
O
3
alone is poor
and the active phase In
2
O
3-
x
of In
2
O
3
-based catalyst is easily deactivated by excessive reduction to form metal In
which needs to be doped with other modified elements to further improve its stability and activity. The catalytic performance of ZrO
2
alone for CO
2
hydrogenation to methanol is not ideal
and its catalytic performance needs to be improved by interacting with other metals or metal oxides. Rare earth elements (La
Ce and Y) as modified elements or their oxides as catalyst carriers can effectively regulate the surface acidity and alkalinity of catalysts
the dispersion of active phases and their specific surface area and metal-carrier interactions
etc.
so as to improve the adsorption and activation capacity of catalysts for CO
2
increase the selectivity of products and enhance the stability of the catalysts. The modification effects of La
Ce and Y on Cu-based
Pd-based and bimetallic oxide catalysts were reviewed
in order to provide reference for the development and application of catalysts modified by rare earth elements for CO
2
hydrogenation to
methanol.
CO2加氢甲醇稀土元素改性作用
CO2 hydrogenationmethanolrare earth elementsmodification effects
LIU Z H, GAO X H, LIU B, et al. Recent advances in thermal catalytic CO2 methanation on hydrotalcite-derived catalysts [J]. Fuel, 2022, 321: 124115.
TOLLEFSON J. World looks ahead post-Copenhagen [J]. Nature, 2009, 462(7276): 966-967.
XIE S Q, LI Z X, LI H D, et al. Integration of carbon capture with heterogeneous catalysis toward methanol production: Chemistry, challenges, and opportunities [J]. Catalysis Reviews, 2023, 65: 1-40.
叶知远, 饶娜, 夏菖佑, 等. CO2加氢制甲醇催化剂与项目进展[J]. 洁净煤技术, 2024, 30(8): 150-161.
YE Z Y, RAO N, XIA C Y, et al. Advances in catalysts and project progress for CO2 hydrogenation to methanol [J]. Clean Coal Technology, 2024, 30(8): 150-161.
林海周, 罗志斌, 裴爱国, 等. 二氧化碳与氢合成甲醇技术和产业化进展[J]. 南方能源建设, 2020, 7(2): 14-19.
LIN H Z, LUO Z B, PEI A G, et al. Technology and industrialization progress on methanol synthesis from carbon dioxide and hydrogen [J]. Southern Energy Construction, 2020, 7(2): 14-19.
BEHRENS M, STUDT F, KASATKIN I, et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts [J]. Science, 2012, 336(6083): 893-897.
KATTEL S, RAMíREZ P J, CHEN J G, et al. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts [J]. Science, 2017, 355(6331): 1296-1299.
ARENA F, MEZZATESTA G, ZAFARANA G, et al. How oxide carriers control the catalytic functionality of the Cu-ZnO system in the hydrogenation of CO2 to methanol [J]. Catalysis Today, 2013, 210: 39-46.
WU C Y, LIN L L, LIU J J, et al. Inverse ZrO2/Cu as a highly efficient methanol synthesis catalyst from CO2 hydrogenation [J]. Nature Communications, 2020, 11(1): 5767.
ZHAO H B, YU R F, MA S C, et al. The role of Cu1-O3 species in single-atom Cu/ZrO2 catalyst for CO2 hydrogenation [J]. Nature Catalysis, 2022, 5(9): 818-831.
LARMIER K, LIAO W C, TADA S, et al. CO2-to-methanol hydrogenation on zirconia-supported copper nanoparticles: Reaction intermediates and the role of the metal-support interface [J]. Angewandte Chemie International Edition, 2017, 56(9): 2318-2323.
ARENA F, ITALIANO G, BARBERA K, et al. Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH [J]. Applied Catalysis A: General, 2008, 350(1): 16-23.
WANG W W, QU Z P, SONG L X, et al. An investigation of Zr/Ce ratio influencing the catalytic performance of CuO/Ce1-xZrxO2 catalyst for CO2 hydrogenation to CH3OH [J]. Journal of Energy Chemistry, 2020, 47: 18-28.
YU J F, YANG M, ZHANG J X, et al. Stabilizing Cu+ in Cu/SiO2 catalysts with a shattuckite-like structure boosts CO2 hydrogenation into methanol [J]. ACS Catalysis, 2020, 10(24): 14694-14706.
YANG M, YU J F, ZIMINA A, et al. Unlocking a dual-channel pathway in CO2 hydrogenation to methanol over single-site zirconium on amorphous silica [J]. Angewandte Chemie International Edition, 2024, 63(4): e202312292.
FUJITANI T, SAITO M, KANAI Y, et al. Development of an active Ga2O3 supported palladium catalyst for the synthesis of methanol from carbon dioxide and hydrogen [J]. Applied Catalysis A: General, 1995, 125(2): 199-202.
LEE K, MENDES P C D, JEON H, et al. Engineering nanoscale H supply chain to accelerate methanol synthesis on ZnZrOx [J]. Nature Communications, 2023, 14(1): 819.
XU L J, CHEN X X, DENG C, et al. Hydrogenation of carbon dioxide to methanol over non-noble catalysts: A state-of-the-art review [J]. Atmosphere, 2023, 14(8): 1208.
YE J Y, LIU C J, MEI D H, et al. Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3(110): A DFT study [J]. ACS Catalysis, 2013, 3(6): 1296-1306.
MARTIN O, MARTÍN A J, MONDELLI C, et al. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation [J]. Angewandte chemie International Edition, 2016, 55(21): 6261-6265.
AKKHARAPHATTHAWON N, CHANLEK N, CHENG C K, et al. Tuning adsorption properties of GaxIn2-xO3 catalysts for enhancement of methanol synthesis activity from CO2 hydrogenation at high reaction temperature [J]. Applied Surface Science, 2019, 489: 278-286.
ZHU J D, CANNIZZARO F, LIU L, et al. Ni-In synergy in CO2 hydrogenation to methanol [J]. ACS Catalysis, 2021, 11(18): 11371-11384.
XU Y N, GAO Z H, PENG L, et al. A highly efficient Cu/ZnOx/ZrO2 catalyst for selective CO2 hydrogenation to methanol [J]. Journal of Catalysis, 2022, 414: 236-244.
WANG J J, LI G N, LI Z L, et al. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol [J]. Science Advances, 2017, 3(10): e1701290.
SUN K H, SHEN C Y, ZOU R, et al. Highly active Pt/In2O3-ZrO2 catalyst for CO2 hydrogenation to methanol with enhanced CO tolerance: The effects of ZrO2 [J]. Applied Catalysis B: Environmental, 2023, 320: 122018.
ZHAO Y F, YANG Y, MIMS C, et al. Insight into methanol synthesis from CO2 hydrogenation on Cu(111): Complex reaction network and the effects of H2O [J]. Journal of Catalysis, 2011, 281(2): 199-211.
REN Y J, YUAN K D, ZHOU X, et al. Catalytic intermediates of CO2 hydrogenation on Cu(111) probed by in operando near-ambient pressure technique [J]. Chemistry—A European Journal, 2018, 24(60): 16097-16103.
NIU J T, LIU H Y, JIN Y, et al. Comprehensive review of Cu-based CO2 hydrogenation to CH3OH: Insights from experimental work and theoretical analysis [J]. International Journal of Hydrogen Energy, 2022, 47(15): 9183-9200.
LIANG H C, ZHANG G H, LI Z Y, et al. Catalytic hydrogenation of CO2 to methanol over Cu-based catalysts: Active sites profiling and regulation strategy as well as reaction pathway exploration [J]. Fuel Processing Technology, 2023, 252: 107995.
BAN H Y, LI C M, ASAMI K, et al. Influence of rare-earth elements (La, Ce, Nd and Pr) on the performance of Cu/Zn/Zr catalyst for CH3OH synthesis from CO2 [J]. Catalysis Communications, 2014, 54: 50-54.
GAO P, LI F, ZHAN H J, et al. Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol [J]. Journal of Catalysis, 2013, 298: 51-60.
BHANAGE B M, FUJITA S I, IKUSHIMA Y, et al. Synthesis of dimethyl carbonate and glycols from carbon dioxide, epoxides, and methanol using heterogeneous basic metal oxide catalysts with high activity and selectivity [J]. Applied Catalysis A: General, 2001, 219: 259-266.
WANG W, WANG S P, MA X B, et al. Recent advances in catalytic hydrogenation of carbon dioxide [J]. Chemical Society Reviews, 2011, 40(7): 3703-3727.
BONURA G, ARENA F, MEZZATESTA G, et al. Role of the ceria promoter and carrier on the functionality of Cu-based catalysts in the CO2-to-methanol hydrogenation reaction [J]. Catalysis Today, 2011, 171(1): 251-256.
LI S Z, WANG Y, YANG B, et al. A highly active and selective mesostructured Cu/AlCeO catalyst for CO2 hydrogenation to methanol [J]. Applied Catalysis A: General, 2019, 571: 51-60.
LI S Z, GUO L M, ISHIHARA T. Hydrogenation of CO2 to methanol over Cu/AlCeO catalyst [J]. Catalysis Today, 2020, 339: 352-361.
TAN Q Q, SHI Z S, WU D F. CO2 hydrogenation to methanol over a highly active Cu-Ni/CeO2-nanotube catalyst [J]. Industrial & Engineering Chemistry Research, 2018, 57(31): 10148-10158.
OUYANG B, TAN W L, LIU B. Morphology effect of nanostructure ceria on the Cu/CeO2 catalysts for synthesis of methanol from CO2 hydrogenation [J]. Catalysis Communications, 2017, 95: 36-39.
CHANG K, WANG T F, CHEN J G. Hydrogenation of CO2 to methanol over CuCeTiOxcatalysts [J]. Applied Catalysis B: Environmental, 2017, 206: 704-711.
GAO P, LI F, ZHAO N, et al. Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol [J]. Applied Catalysis A: General, 2013, 468: 442-452.
GAO P, ZHONG L S, ZHANG L N, et al. Yttrium oxide modified Cu/ZnO/Al2O3 catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol [J]. Catalysis Science & Technology, 2015, 5(9): 4365-4377.
SŁOCZYŃSKI J, GRABOWSKI R, OLSZEWSKI P, et al. Effect of metal oxide additives on the activity and stability of Cu/ZnO/ZrO2 catalysts in the synthesis of methanol from CO2 and H2 [J]. Applied Catalysis A: General, 2006, 310: 127-137.
MA Z, OVERBURY S H, DAI S. Au/MxOy/TiO2 catalysts for CO oxidation: Promotional effect of main-group, transition, and rare-earth metal oxide additives [J]. Journal of Molecular Catalysis A: Chemical, 2007, 273(1): 186-197.
GUO X M, MAO D S, LU G Z, et al. The influence of La doping on the catalytic behavior of Cu/ZrO2 for methanol synthesis from CO2 hydrogenation [J]. Journal of Molecular Catalysis A: Chemical, 2011, 345(1/2): 60-68.
CHEN K, DUAN X P, FANG H H, et al. Selective hydrogenation of CO2 to methanol catalyzed by Cu supported on rod-like La2O2CO3 [J]. Catalysis Science & Technology, 2018, 8(4): 1062-1069.
CHEN K, FANG H H, WU S, et al. CO2 hydrogenation to methanol over Cu catalysts supported on La-modified SBA-15: The crucial role of Cu-LaOx interfaces [J]. Applied Catalysis B: Environmental, 2019, 251: 119-129.
NIE M D, CUI A X, WU M, et al. CuO/LaCeOx catalysts with enhanced metal-support interactions for CO2 methanolization [J]. Journal of CO2 Utilization, 2023, 75: 102579.
CHANG K, ZHANG H C, CHENG M J, et al. Application of ceria in CO2 conversion catalysis [J]. ACS Catalysis, 2020, 10(1): 613-631.
ESCH F, FABRIS S, ZHOU L, et al. Electron localization determines defect formation on ceria substrates [J]. Science, 2005, 309(5735): 752-755.
CHENG Z, SHERMAN B J, LO C S. Carbon dioxide activation and dissociation on ceria (110): A density functional theory study [J]. The Journal of Chemical Physics, 2013, 138(1): 14702.
ZHANG W, MA X L, XIAO H, et al. Mechanistic investigations on thermal hydrogenation of CO2 to methanol by nanostructured CeO2(100): The crystal-plane effect on catalytic reactivity [J]. The Journal of Physical Chemistry C, 2019, 123(18): 11763-11771.
FAN L, FUJIMOTO K. Development of an active and stable ceria-supported palladium catalyst for hydrogenation of carbon dioxide to methanol [J]. Applied Catalysis A: General, 1993, 106(1): 1-7.
FAN L, FUJIMOTO K. Promotive SMSI effect for hydrogenation of carbon dioxide to methanol on a Pd/CeO2 catalyst [J]. Journal of Catalysis, 1994, 150(1): 217-220.
FAN L, FUJIMOTO K. Reaction mechanism of methanol synthesis from carbon dioxide and hydrogen on ceria-supported palladium catalysts with SMSI effect [J]. Journal of Catalysis, 1997, 172(1): 238-242.
JIANG F, WANG S S, LIU B, et al. Insights into the influence of CeO2 crystal facet on CO2 hydrogenation to methanol over Pd/CeO2 catalysts [J]. ACS Catalysis, 2020, 10(19): 11493-11509.
LIU P, NØRSKOV J K. Ligand and ensemble effects in adsorption on alloy surfaces [J]. Physical Chemistry Chemical Physics, 2001, 3(17): 3814-3818.
LEITENBURG C D, TROVARELLI A, KAŠPAR J. A temperature-programmed and transient kinetic study of CO2 activation and methanation over CeO2 supported noble metals [J]. Journal of Catalysis, 1997, 166(1): 98-107.
LIN F W, JIANG X, BORERIBOON N, et al. Effects of supports on bimetallic Pd-Cu catalysts for CO2 hydrogenation to methanol [J]. Applied Catalysis A: General, 2019, 585: 117210.
OJELADE O A, ZAMAN S F, DAOUS M A, et al. Optimizing Pd:Zn molar ratio in PdZn/CeO2 for CO2 hydrogenation to methanol [J]. Applied Catalysis A: General, 2019, 584: 117185.
MALIK A S, ZAMAN S F, AL ZAHRANI A A, et al. Development of highly selective PdZn/CeO2 and Ca-doped PdZn/CeO2 catalysts for methanol synthesis from CO2 hydrogenation [J]. Applied Catalysis A: General, 2018, 560: 42-53.
WEI Y L, LIU F, MA J, et al. Catalytic roles of In2O3 in ZrO2-based binary oxides for CO2 hydrogenation to methanol [J]. Molecular Catalysis, 2022, 525: 112354.
CAI D R, CAI Y M, TAN K B, et al. Recent advances of indium oxide-based catalysts for CO2 hydrogenation to methanol: Experimental and theoretical [J]. Materials, 2023, 16: 2803
ZHANG X Q, KIRILIN A V, ROZEVELD S, et al. Support effect and surface reconstruction in In2O3/m-ZrO2 catalyzed CO2 hydrogenation [J]. ACS Catalysis, 2022, 12(7): 3868-3880.
SUN K H, ZHANG Z T, SHEN C Y, et al. The feasibility study of the indium oxide supported silver catalyst for selective hydrogenation of CO2 to methanol [J]. Green Energy & Environment, 2022, 7(4): 807-817.
WANG J J, TANG C Z, LI G N, et al. High-performance MaZrOx (Ma = Cd, Ga) solid-solution catalysts for CO2 hydrogenation to methanol [J]. ACS Catalysis, 2019, 9(11): 10253-10259.
SHI Z S, TAN Q Q, WU D F. Ternary copper-cerium-zirconium mixed metal oxide catalyst for direct CO2 hydrogenation to methanol [J]. Materials Chemistry and Physics, 2018, 219: 263-272.
CHOU C Y, LOBO R F. Direct conversion of CO2 into methanol over promoted indium oxide-based catalysts [J]. Applied Catalysis A: General, 2019, 583: 117144.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构