浏览全部资源
扫码关注微信
中石化(上海)石油化工研究院有限公司 绿色化工与工业催化全国重点实验室,上海 201208
丁佳佳(1985—),博士,副研究员,研究方向为甲醇制烯烃催化剂的开发,E-mail:dingjj.sshy@sinopec.com。
刘红星(1976—),博士,正高级工程师,研究方向为甲醇制烯烃催化剂的开发及应用,E-mail:liuhx.sshy@sinopec.com。
纸质出版日期:2024-08-25,
收稿日期:2024-05-10,
修回日期:2024-06-04,
移动端阅览
丁佳佳,申学峰,刘红星.失活甲醇制烯烃催化剂用于导向剂法制备SAPO-34分子筛及其应用[J].低碳化学与化工,2024,49(08):131-137.
DING Jiajia,SHEN Xuefeng,LIU Hongxing.Deactivated methanol to olefin catalyst for preparation of SAPO-34 molecular sieve by directing agent method and its application[J].Low-carbon Chemistry and Chemical Engineering,2024,49(08):131-137.
丁佳佳,申学峰,刘红星.失活甲醇制烯烃催化剂用于导向剂法制备SAPO-34分子筛及其应用[J].低碳化学与化工,2024,49(08):131-137. DOI: 10.12434/j.issn.2097-2547.20240207.
DING Jiajia,SHEN Xuefeng,LIU Hongxing.Deactivated methanol to olefin catalyst for preparation of SAPO-34 molecular sieve by directing agent method and its application[J].Low-carbon Chemistry and Chemical Engineering,2024,49(08):131-137. DOI: 10.12434/j.issn.2097-2547.20240207.
以失活甲醇制烯烃(MTO)催化剂为部分铝源、磷源和全部硅源,以三乙胺为模板剂,在低温(160 ℃)条件下制备了导向剂,并采用导向剂法绿色合成了S-SAPO-34分子筛,以及不加入导向剂直接合成了C-SAPO-34分子筛。采用XRD、SEM、N
2
吸/脱附、NH
3
-TPD、固体MAS-NMR以及TGA等方法对合成的两种分子筛的晶体结构、形貌、孔隙结构、酸性特征、配位状态以及热稳定性等进行了表征。结果表明,通过导向剂法可以在有机模板剂的用量缩减2/3的条件下合成出高结晶度SAPO-34分子筛。在固定床反应器上对S-SAPO-34和C-SAPO-34分子筛进行了催化MTO反应性能评价,反应条件为温度460 ℃、常压、甲醇质量空速6.0 h
-1
以及原料为纯甲醇。结果表明,相较于C-SAPO-34,S-SAPO-34分子筛的结晶性能更好,相对结晶度达136%,且晶体形貌更加完整。在MTO反应中,S-SAPO-34和C-SAPO-34分子筛均能满足甲醇转化,双烯(乙烯+丙烯)选择性最高分别为82.1%和82.3%。该方法可为低模板剂用量条件下SAPO-34分子筛的绿色合成提供新的思路。
Using deactivated methanol to olefin (MTO) catalyst as a partial aluminum and phosphorus source and entire silicon source
and triethylamine as a template
a directing agent was prepared at low temperature (160 ℃). S-SAPO-34 molecular sieve was then green synthesized by directing agent method
and C-SAPO-34 molecular sieve was synthesized without directing agents. The crystal structures
morphologies
pore structures
acidic characteristics
coordination states and thermal stabilities of the two molecular sieves were analyzed by XRD
SEM
N
2
adsorption/desorption
NH
3
-TPD
solid-state MAS-NMR and TGA. The results indicate that SAPO-34 molecular sieve with high crystallinity can be synthesized by directing agent method under the condition of reducing the amount of organic template agent by 2/3. The catalytic performance evaluation of S-SAPO-34 and C-SAPO-34
molecular sieves for MTO reaction was carried out on a fixed bed reactor under the reaction conditions of temperature 460 ℃
atmospheric pressure
methanol mass space velocity 6.0 h
-1
and pure methanol as the raw material. The results show that compared to C-SAPO-34
the crystallization performance of S-SAPO-34 molecular sieve is much better
with a relative crystallinity of 136%
and the crystal morphology is more complete. In MTO reaction
S-SAPO-34 and C-SAPO-34 molecular sieves can ensure methanol conversion
and the highest selectivities of diene (ethylene + propylene) are 82.1% and 82.3%
respectively. This method can provide a new idea for the green synthesis of SAPO-34 molecular sieve under low dosage template conditions.
SAPO-34失活催化剂导向剂法低模板剂MTO反应
SAPO-34deactivated catalystdirecting agent methodlow templateMTO reaction
ZHONG J W, HAN J F, WEI Y X, et al. Recent advances of the nano-hierarchical SAPO-34 in the methanol-to-olefin (MTO) reaction and other applications [J]. Catalysis Science & Technology, 2017, 7(21): 4905-4923.
CUNDY C S, COX P A. The hydrothermal synthesis of zeolites: History and development from the earliest days to the present time [J]. Chemical Reviews, 2003, 103(3): 663-702.
SUN Q M, WANG N, XI D Y, et al. Organosilane surfactant-directed synthesis of hierarchical porous SAPO-34 catalysts with excellent MTO performance [J]. Chemical Communications, 2014, 50(49): 6502-6505.
CORMA A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions [J]. Chemical Reviews, 1995, 95(3): 559-614.
ÁLVARO-MUÑOZ T, MÁRQUEZ-ÁLVAREZ C, SASTRE E. Use of different templates on SAPO-34 synthesis: Effect on the acidity and catalytic activity in the MTO reaction [J]. Catalysis Today, 2012, 179(1): 27-34.
ROSTAMI R B, GHAVIPOUR M, BEHBAHANI R M, et al. Improvement of SAPO-34 performance in MTO reaction by utilizing mixed-template catalyst synthesis method [J]. Journal of Natural Gas Science and Engineering, 2014, 20: 312-318.
BAHRAMI H, DARIAN J T, SEDIGHI M. Simultaneous effects of water, TEAOH and morpholine on SAPO-34 synthesis and its performance in MTO process [J]. Microporous and Mesoporous Materials, 2018, 261: 111-118.
LIU G Y, TIAN P, ZHANG Y, et al. Synthesis of SAPO-34 templated by diethylamine: Crystallization process and Si distribution in the crystals [J]. Microporous and Mesoporous Materials, 2008, 114(1): 416-423.
VOMSCHEID R, BRIEND M, PELTRE M J, et al. The role of the template in directing the Si distribution in SAPO zeolites [J]. The Journal of Physical Chemistry, 1994, 98(38): 9614-9618.
FAN D, TIAN P, XU S T, et al. SAPO-34 templated by dipropylamine and diisopropylamine: Synthesis and catalytic performance in the methanol to olefin (MTO) reaction [J]. New Journal of Chemistry, 2016, 40(5): 4236-4244.
DUMITRIU E, AZZOUZ A, HULEA V, et al. Synthesis, characterization and catalytic activity of SAPO-34 obtained with piperidine as templating agent [J]. Microporous Materials, 1997, 10(1): 1-12.
刘红星, 丁佳佳, 申学峰, 等. 从基础研究到工业转化应用的实践—甲醇制烯烃SMTO催化技术开发[J]. 石油炼制与化工, 2024, 55(1): 122-129.
LIU H X, DING J J, SHEN X F, et al. The practice from fundamental research to commercial application—Research and development of SMTO technology for methanol-to-olefins [J]. Petroleum Processing and Petrochemicals, 2024, 55(1): 122-129.
姜兴剑. 甲醇制烯烃催化剂废粉再利用研究[J]. 石油与天然气化工, 2018, 47(2): 37-43.
JIANG X J. Study on reuse of methanol to olefin catalyst waste powder [J]. Chemical Engineering of Oil & Gas, 2018, 47(2): 37-43.
张海荣, 张卿, 李玉平, 等. 以SAPO-34为原料直接合成小晶粒PZSM-5及其甲醇转化催化性能[J]. 石油学报(石油加工), 2010, 26(3): 357-363.
ZHANG H R, ZHANG Q, LI Y P, et al. Direct synthesis and methanol conversion catalytic performance of PZSM-5 zeolite with performed SAPO-34 molecular sieve [J]. Acta Petrolei Sinica (Petroleum Processing Section) , 2010, 26(3): 357-363.
狄春雨, 李晓峰, 王平, 等. MTO废催化剂SAPO-34的再生[J]. 化工环保, 2016, 36(5): 562-566.
DI C Y, LI X F, WANG P, et al. Regeneration of spend MTO catalyst SAPO-34 [J]. Environmental Protection of Chemical Industry, 2016, 36(5): 562-566.
AGHAMOHAMMADI S, HAGHIGHI M, CHARGHAND M. Methanol conversion to light olefins over nanostructured CeAPSO-34 catalyst: Thermodynamic analysis of overall reactions and effect of template type on catalytic properties and performance [J]. Materials Research Bulletin, 2014, 50: 462-475.
YANG H Q, LIU Z C, GAO H X, et al. Synthesis and catalytic performances of hierarchical SAPO-34 monolith [J]. Journal of Materials Chemistry, 2010, 20(16): 3227-3231.
MÜLLER S, LIU Y, KIRCHBERGER F M, et al. Hydrogen transfer pathways during zeolite catalyzed methanol conversion to hydrocarbons [J]. Journal of the American Chemical Society, 2016, 138(49): 15994-16003.
TAN J, LIU Z M, BAO X H, et al. Crystallization and Si incorporation mechanisms of SAPO-34 [J]. Microporous and Mesoporous Materials, 2002, 53(1/2/3): 97-108.
SUN Q M, MA Y H, WANG N, et al. High performance nanosheet-like silicoaluminophosphate molecular sieves: Synthesis, 3D EDT structural analysis and MTO catalytic studies [J]. Journal of Materials Chemistry A, 2014, 2(42): 17828-17839.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构