浏览全部资源
扫码关注微信
北京工业大学 环境科学与工程学院,北京 100124
张兰(1993—),博士研究生,研究方向为C1小分子催化转化,E-mail:15110069255@emails.bjut.edu.cn。
王宁(1986—),博士,教授,研究方向为C1小分子催化转化及高碳化学品的合成,E-mail:ning.wang.1@bjut.edu.cn。
纸质出版日期:2024-08-25,
收稿日期:2024-05-09,
修回日期:2024-05-20,
移动端阅览
张兰,陈标华,王宁.CuZn/CeO2催化剂在CO2加氢制甲醇中的应用研究[J].低碳化学与化工,2024,49(08):100-106.
ZHANG Lan,CHEN Biaohua,WANG Ning.Study on application of CuZn/CeO2 catalysts in CO2 hydrogenation to methanol[J].Low-carbon Chemistry and Chemical Engineering,2024,49(08):100-106.
张兰,陈标华,王宁.CuZn/CeO2催化剂在CO2加氢制甲醇中的应用研究[J].低碳化学与化工,2024,49(08):100-106. DOI: 10.12434/j.issn.2097-2547.20240205.
ZHANG Lan,CHEN Biaohua,WANG Ning.Study on application of CuZn/CeO2 catalysts in CO2 hydrogenation to methanol[J].Low-carbon Chemistry and Chemical Engineering,2024,49(08):100-106. DOI: 10.12434/j.issn.2097-2547.20240205.
CO
2
加氢制甲醇反应过程中产生的大量副产物水会加速催化剂中CuZn物种的聚集和烧结,导致催化剂严重失活。而CeO
2
亲水性较弱,具有较高的水热稳定性,可以增强CuZn物种的分散。因此,通过水热合成法制备了一系列CeO
2
载体晶面可调控的CuZn基催化剂,并在其中引入了适当浓度的氧空位。采用TEM、XRD和H
2
-TPR等表征手段研究了合成的CeO
2
载体及CuZn/CeO
2
-
y
催化剂(
y
为rod、cube 或otca)的形貌、结构和还原性能等物理化学性质,并考察了CuZn/CeO
2
-
y
催化剂在CO
2
加氢制甲醇反应中的催化性能。结果表明,暴露(110)晶面的纳米棒结构的CeO
2
载体(CeO
2
-rod)更有利于CuZn基物种的分散,并且CeO
2
-rod与Cu物种形成了Cu—O—Ce界面,增强了催化剂同时吸附和活化CO
2
和H
2
的性能。因此,CuZn/CeO
2
-rod表现出较高的CO
2
转化率和甲醇选择性,在260 ℃、3 MPa的条件下,甲醇时空收率为433.4 g/(kg·h),甲醇选择性高达68.5%。同时,利用原位漫反射傅立叶变换红外光谱对CO
2
加氢制甲醇的反应路径和重要中间物种的演变进行了详细研究,发现在CuZn/CeO
2
催化剂的作用下,反应主要遵循甲酸盐路径,载体的晶面效应没有改变反应路径,但是提高了重要中间物种达到平衡的速率。
The presence of by-product water produced during the CO
2
hydrogenation to methanol reaction will accelerate the aggregation and sintering of CuZn species
resulting in serious deactivation of the catalyst. CeO
2
has weak hydrophilicity and high hydrothermal stability
which can enhance the dispersion of CuZn species. Consequently
a series of CuZn-based catalysts with controllable crystal planes of CeO
2
carriers were synthesized by hydrothermal method
and appropriate concentrations of oxygen vacancy were strategically introduced. The physicochemical properties such as morphologies a
nd structures and reduction performances of the synthesized CeO
2
carriers and CuZn/CeO
2
-
y
catalysts (
y
represents rod、cube or otca) were studied by characterization methods such as TEM
XRD and H
2
-TPR. The catalytic performances of CuZn/CeO
2
-
y
catalysts in CO
2
hydrogenation to methanol were also investigated. The results show that the CeO
2
carrier with nanorod structure and exposed (110) crystal plane (CeO
2
-rod) is more conducive to the dispersion of CuZn-based species. Moreover
CeO
2
-rod and Cu species form Cu—O—Ce interface
which enhances the ability of the catalyst to adsorb and activate CO
2
and H
2
simultaneously. Therefore
CuZn/CeO
2
-rod catalyst exhibits high CO
2
conversion and methanol selectivity. Under the conditions of 260 °C and 3 MPa
the space-time yield of methanol is up to 433.4 g/(kg·h)
and methanol selectivity is up to 68.5%. Simultaneously
the reaction paths and evolution of intermediates in CO
2
hydrogenation to methanol were thoroughly delineated by in situ diffuse reflectance infrared Fourier transform spectroscopy. It is found that under the action of CuZn/CeO
2
catalysts
the reaction mainly follow the formate path. The crystal plane effect of the carrier does not change the reaction paths
but it increases the equilibrium rate of important intermediate species.
CuZn/CeO2催化剂CO2加氢甲醇选择性氧空位
CuZn/CeO2 catalystCO2 hydrogenationmethanol selectivityoxygen vacancy
JACKSON R B, LE QUÉRÉ C, ANDREW R M, et al. Warning signs for stabilizing global CO2 emissions [J]. Environmental Research Letters, 2017, 12(11): 110202.
STREFLER J, KRIEGLER E, BAUER N, et al. Alternative carbon price trajectories can avoid excessive carbon removal [J]. Nature Communications, 2021, 12(1): 2264.
SHIH C F, ZHANG T, LI J H, et al. Powering the future with liquid sunshine [J]. Joule, 2018, 2(10): 1925-1949.
KUMAR A, DAW P, MILSTEIN D. Homogeneous catalysis for sustainable energy: Hydrogen and methanol economies, fuels from biomass, and related topics [J]. Chemical reviews, 2022, 122(1): 385-441.
TIAN Z, WANG Y, ZHEN X D, et al. The effect of methanol production and application in internal combustion engines on emissions in the context of carbon neutrality: A review [J]. Fuel, 2022, 320: 123902.
PÉREZ-FORTES M, SCHÖNEBERGER J C, BOULAMANTI A, et al. Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment [J]. Applied Energy, 2016, 161: 718-732.
WANG Y, TAN L, TAN M H, et al. Rationally designing bifunctional catalysts as an efficient strategy to boost CO2 hydrogenation producing value-added aromatics [J]. ACS Catalysis, 2018, 9(2): 895-901.
WANG F, XIAO W Y, GAO L J, et al. The growth mode of ZnO on HZSM-5 substrates by atomic layer deposition and its catalytic property in the synthesis of aromatics from methanol [J]. Catalysis Science & Technology, 2016, 6(9): 3074-3086.
WANG N, LI J, SUN W J, et al. Rational design of zinc/zeolite catalyst: Selective formation of p-xylene from methanol to aromatics reaction [J]. Angewandte Chemie International Edition, 2022, 61(10): e202114786.
LIANG B L, MA J G, SU X, et al. Investigation on deactivation of Cu/ZnO/Al2O3 catalyst for CO2 hydrogenation to methanol [J]. Industrial & Engineering Chemistry Research, 2019, 58(21): 9030-9037.
KHAN M E, KHAN M M, CHO M H. Ce3+-ion, surface oxygen vacancy, and visible light-induced photocatalytic dye degradation and photocapacitive performance of CeO2-graphene nanostructures [J]. Scientific Reports, 2017, 7(1): 5928.
PAIER J, PENSCHKE C, SAUER J. Oxygen defects and surface chemistry of ceria: Quantum chemical studies compared to experiment [J]. Chemical reviews, 2013, 113(6): 3949-3985.
HUANG X B, ZHANG K Y, PENG B X, et al. Ceria-based materials for thermocatalytic and photocatalytic organic synthesis [J]. ACS Catalysis, 2021, 11(15): 9618-9678.
GRACIANI J, MUDIYANSELAGE K, XU F, et al. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2 [J]. Science, 2014, 345(6196): 546-550.
XIE F Q, XU S Y, DENG L D, et al. CO2 hydrogenation on Co/CeO2-δ catalyst: Morphology effect from CeO2 support [J]. International Journal of Hydrogen Energy, 2020, 45(51): 26938-26952.
CAO F X, XIAO Y S, ZHANG Z M, et al. Influence of oxygen vacancies of CeO2 on reverse water gas shift reaction [J]. Journal of Catalysis, 2022, 414: 25-32.
GUO J X, LUO Z, HU G T, et al. Synthesis of oxygen vacancies enriched Cu/ZnO/CeO2 for CO2 hydrogenation to methanol [J]. Greenhouse Gases: Science and Technology, 2021, 11(6): 1171-1179.
SCHMITT R, NENNING A, KRAYNIS O, et al. A review of defect structure and chemistry in ceria and its solid solutions [J]. Chemical Society Reviews, 2020, 49(2): 554-592.
YAN Y, WONG R J, MA Z R, et al. CO2 hydrogenation to methanol on tungsten-doped Cu/CeO2 catalysts [J]. Applied Catalysis B: Environmental, 2022, 306: 121098.
CUI Y Y, DAI W L. Support morphology and crystal plane effect of Cu/CeO2 nanomaterial on the physicochemical and catalytic properties for carbonate hydrogenation [J]. Catalysis Science & Technology, 2016, 6(21): 7752-7762.
JANG M G, YOON S, SHIN D, et al. Boosting support reducibility and metal dispersion by exposed surface atom control for highly active supported metal catalysts [J]. ACS Catalysis, 2022, 12(8): 4402-4414.
BERA P, PATIL K C, JAYARAM V, et al. Ionic dispersion of Pt and Pd on CeO2 by combustion method: Effect of metal-ceria interaction on catalytic activities for NO reduction and CO and hydrocarbon oxidation [J]. Journal of Catalysis, 2000, 196(2): 293-301.
WANG N, QIAN W Z, CHU W, et al. Crystal-plane effect of nanoscale CeO2 on the catalytic performance of Ni/CeO2 catalysts for methane dry reforming [J]. Catalysis Science & Technology, 2016, 6(10): 3594-3605.
HU Z, LIU X F, MENG D M, et al. Effect of ceria crystal plane on the physicochemical and catalytic properties of Pd/Ceria for CO and propane oxidation [J]. ACS Catalysis, 2016, 6(4): 2265-2279.
LI W Z, KOVARIK L, MEI D H, et al. Stable platinum nanoparticles on specific MgAl2O4 spinel facets at high temperatures in oxidizing atmospheres [J]. Nature Communications, 2013, 4(1): 2481.
温丽丹, 李金来. Cu/Zn/TiO2负载型催化剂上CO2加氢合成甲醇[J]. 化学研究, 2009, 20(1): 61-64.
WEN L D, LI J L. Synthesis of methanol by carbon dioxide hydrogenation on supported catalyst Cu/Zn/TiO2 [J]. Chemical Research, 2009, 20(1): 61-64.
高鹏, 李枫, 赵宁, 等. 以类水滑石为前驱体的Cu/Zn/Al/(Zr)/(Y)催化剂制备及其催化CO2加氢合成甲醇的性能[J]. 物理化学学报, 2014, 30(6): 1155-1162.
GAO P, LI F, ZHAO N, et al. Preparation of Cu/Zn/Al/(Zr)/(Y) catalysts from hydrotalcite-like precursors and their catalytic performance for the hydrogenation of CO2 to methanol [J]. Acta Physico Chimica Sinica, 2014, 30(6): 1155-1162.
巩晓辉, 王明, 伞晓广. Cu-Zn-C3N4多孔结构催化剂制备及其催化CO2加氢合成甲醇反应性能研究[J]. 当代化工, 2020, 49(6), 1103-1106.
GONG X H, WANG M, SAN X G. Preparation of Cu-Zn-C3N4 porous catalyst and its catalytic performance for synthesis of methanol by CO2 hydrogenation reaction [J]. Contemporary Chemical Industry, 2020, 49(6): 1103-1106.
JIANG F, WANG S S, LIU B, et al. Insights into the Influence of CeO2 crystal facet on CO2 hydrogenation to methanol over Pd/CeO2 catalysts [J]. ACS Catalysis, 2020, 10(19): 11493-11509.
LI C W, SUN Y, DJERDJ I, et al. Shape-controlled CeO2 nanoparticles: Stability and activity in the catalyzed HCl oxidation reaction [J]. ACS Catalysis, 2017, 7(10): 6453-6463.
ZHU J D, SU Y Q, CHAI J C, et al. Mechanism and nature of active sites for methanol synthesis from CO/CO2 on Cu/CeO2 [J]. ACS Catalysis, 2020, 10(19): 11532-11544.
HU B T, SUN K A, ZHUANG Z W, et al. Distinct crystal-facet-dependent behaviors for single-atom palladium-on-ceria catalysts: Enhanced stabilization and catalytic properties [J]. Advanced Materials, 2022, 34(16): 2107721.
TAN Q Q, SHI Z S, WU D F. CO2 hydrogenation over differently morphological CeO2-supported Cu-Ni catalysts [J]. International Journal of Energy Research, 2019, 43(10): 5392-5404.
LEMPELTO A, GELL L, KILJUNEN T, et al. Exploring CO2 hydrogenation to methanol at a CuZn-ZrO2 interface via DFT calculations [J]. Catalysis Science & Technology, 2023, 13(15): 4387-4399.
黄艳, 王贵文, 杨龙, 等. CO2催化加氢制备C1产物的反应路径与催化剂研究进展[J]. 低碳化学与化工, 2024, 49(3): 1-8.
HUANG Y, WANG G W, YANG L, et al. Research progress in reaction pathways and catalysts of CO2 catalytic hydrogenation to prepare C1 products [J]. Low-Carbon Chemistry and Chemical Engineering, 2024, 49(3): 1-8.
SONG L X, WANG H, WANG S, et al. Dual-site activation of H2 over Cu/ZnAl2O4 boosting CO2 hydrogenation to methanol [J]. Applied Catalysis B: Environmental, 2023, 322: 122137.
MEUNIER F C, DANSETTE I, PAREDES-NUNEZ A, et al. Cu-bound formates are main reaction intermediates during CO2 hydrogenation to methanol over Cu/ZrO2 [J]. Angewandte Chemie International Edition, 2023, 62(29): e202303939.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构