浏览全部资源
扫码关注微信
南昌大学 化学化工学院,江西 南昌 330031
胡译之(2000—),硕士研究生,研究方向为工业催化,E-mail:15907032795@163.com。
张荣斌(1969—),博士,教授,研究方向为工业催化,E-mail:rbzhang@ncu.edu.cn;
冯刚(1982—),博士,教授,研究方向为工业催化,E-mail:fenggang@ncu.edu.cn;
叶闰平(1990—),博士,教授,研究方向为多相催化,E-mail:rye@ncu.edu.cn。
纸质出版日期:2024-08-25,
收稿日期:2024-04-24,
修回日期:2024-05-21,
移动端阅览
胡译之,彭揚,张义焕等.Ni/CeO2基催化剂构筑及其CO2甲烷化催化性能研究进展[J].低碳化学与化工,2024,49(08):74-88.
HU Yizhi,PENG Yang,ZHANG Yihuan,et al.Research progress on construction of Ni/CeO2-based catalysts and their catalytic performances of CO2 methanation[J].Low-carbon Chemistry and Chemical Engineering,2024,49(08):74-88.
胡译之,彭揚,张义焕等.Ni/CeO2基催化剂构筑及其CO2甲烷化催化性能研究进展[J].低碳化学与化工,2024,49(08):74-88. DOI: 10.12434/j.issn.2097-2547.20240175.
HU Yizhi,PENG Yang,ZHANG Yihuan,et al.Research progress on construction of Ni/CeO2-based catalysts and their catalytic performances of CO2 methanation[J].Low-carbon Chemistry and Chemical Engineering,2024,49(08):74-88. DOI: 10.12434/j.issn.2097-2547.20240175.
CO
2
加氢制甲烷(即“CO
2
甲烷化”)是实现碳中和目标的重要途径。CeO
2
由于具有丰富的表面氧空位和优异的储氧性能被认为是重要的催化剂载体之一,过渡金属Ni也因为具有优异的催化性能和低廉的价格被广泛应用于催化剂的研究,CeO
2
和金属Ni结合形成的Ni/CeO
2
基催化剂在CO
2
甲烷化反应中展现了良好的应用前景。阐述了Ni/CeO
2
基催化剂催化CO
2
甲烷化的机理,介绍了Ni/CeO
2
基催化剂制备方法,重点总结了活性中心特征、载体性质、助剂类型和金属-载体相互作用等影响Ni/CeO
2
基催化CO
2
甲烷化催化性能的因素,并总结了改性Ni/CeO
2
基催化剂的催化性能。分析发现,通过对Ni/CeO
2
基催化剂进行改性,可以调控Ni/CeO
2
基催化剂的CO
2
甲烷化催化性能与产物选择性,可为提升其CO
2
甲烷化催化性能提供新的思路。
CO
2
hydrogenation to methane (also known as “CO
2
methanation”) is an important way to achieve the goal of carbon neutralization. CeO
2
is considered as one of the most important catalyst supports because of its abundant surface oxygen vacancies and excellent oxygen storage capacity. Transition metal Ni is also widely studied because of its excellent catalytic performance and low price. The Ni/CeO
2
-based catalysts formed by the combination of CeO
2
and metal Ni show good application prospects in CO
2
methanation. The reaction mechanisms of Ni/CeO
2
-based catalysts for CO
2
methanation were summarized and the preparation methods of Ni/CeO
2
-based catalysts were introduced
and the key parameters affecting catalytic performance of CO
2
methanation such as the characteristics of active centers
properties of supports
types of additives and metal-support interactions were summarized
and the catalytic performances of Ni/CeO
2
-based catalysts were also summarized. It is found that by modifying Ni/CeO
2
-based catalysts
the catalytic performances and product selectivities of Ni/CeO
2
-based catalysts for CO
2
methanation can be regulated
which can provide new ideas for improving their catalytic performances of CO
2
methanation.
Ni/CeO2基催化剂CO2甲烷化金属-载体相互作用制备方法
Ni/CeO2-based catalystsCO2 methanationmetal-support interactionspreparation method
TRAN D P H, PHAM M T, BUI X T, et al. CeO2 as a photocatalytic material for CO2 conversion: A review [J]. Solar Energy, 2022, 240: 443-466.
KATTEL S, YAN B H, YANG Y X, et al. Optimizing binding energies of key intermediates for CO2 hydrogenation to methanol over oxide-supported copper [J]. Journal of the American Chemical Society, 2016, 138(38): 12440-12450.
CAI T, SUN H B, QIAO J, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide [J]. Science, 2021, 373(6562): 1523-1527.
SU X, YANG X F, HUANG Y Q, et al. Single-atom catalysis toward efficient CO2 conversion to CO and formate products [J]. Accounts of Chemical Research, 2019, 52(3): 656-664.
郭嘉懿, 何育荣, 马晶晶, 等. 二氧化碳催化加氢制甲醇研究进展 [J]. 洁净煤技术, 2023, 29(4): 49-64.
GUO J Y, HE Y R, MA J J, et al. Research progress on catalytic hydrogenation of carbon dioxide to methanol [J]. Clean Coal Technology, 2023, 29(4): 49-64.
YE R P, MA L X, MAO J N, et al. A Ce-CuZn catalyst with abundant Cu/Zn-OV-Ce active sites for CO2 hydrogenation to methanol [J]. Nature Communications, 2024, 15(1): 2159.
FAN W K, TAHIR M. Investigating the product distribution behaviour of CO2 methanation through thermodynamic optimized experimental approach using micro/nano structured titania catalyst [J]. Energy Conversion and Management, 2022, 254: 115240.
AZIZ M A A, JALIL A A, TRIWAHYONO S, et al. CO2 methanation over heterogeneous catalysts: Recent progress and future prospects [J]. Green Chemistry, 2015, 17(5): 2647-2663.
BROOKS K P, HU J L, ZHU H Y, et al. Methanation of carbon dioxide by hydrogen reduction using the Sabatier process in microchannel reactors [J]. Chemical Engineering Science, 2007, 62(4): 1161-1170.
SOLIS-GARCIA A, ZEPEDA T A, FIERRO-GONZALEZ J C. Spectroscopic evidence of the simultaneous participation of rhodium carbonyls and surface formate species during the CO2 methanation catalyzed by ZrO2-supported Rh [J]. Applied Catalysis B: Environmental, 2022, 304: 120955.
CHEN S L, ABDEL-MAGEED A M, LI M R, et al. Electronic metal-support interactions and their promotional effect on CO2 methanation on Ru/ZrO2 catalysts [J]. Journal of Catalysis, 2021, 400: 407-420.
MIHET M, LAZAR M D. Methanation of CO2 on Ni/γ-Al2O3: Influence of Pt, Pd or Rh promotion [J]. Catalysis Today, 2018, 306: 294-299.
MALIK A S, BALI H, CZIROK F, et al. Turning CO2 to CH4 and CO over CeO2 and MCF-17 supported Pt, Ru and Rh nanoclusters—Influence of nanostructure morphology, supporting materials and operating conditions [J]. Fuel, 2022, 326: 124994.
AZIZ M A A, JALIL A A, TRIWAHYONO S, et al. Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation [J]. Applied Catalysis B: Environmental, 2014, 147: 359-368.
李曰威, 陈世霞, 王珺, 等. 镍-氮-碳材料作为二氧化碳电催化剂的应用[J]. 南昌大学学报(工科版), 2020, 42(3): 228-232.
LI Y W, CHEN S X, WANG J, et al. Application of nitrogen-doped nickel catalysts in electrocatalytic reduction of carbon dioxide [J]. Journal of Nanchang University (Engineering & Technology), 2020, 42(3): 228-232.
LIN L L, YAO S Y, LIU Z Y, et al. In situ characterization of Cu/CeO2 nanocatalysts for CO2 hydrogenation: Morphological effects of nanostructured ceria on the catalytic activity [J]. The Journal of Physical Chemistry C, 2018, 122(24): 12934-12943.
LIN L L, YAO S Y, RUI N, et al. Conversion of CO2 on a highly active and stable Cu/FeOx/CeO2 catalyst: Tuning catalytic performance by oxide-oxide interactions [J]. Catalysis Science & Technology, 2019, 9(14): 3735-3742.
LI W Q, GOVERAPET SRINIVASAN S, SALAHUB D R, et al. Ni on the CeO2(110) and (100) surfaces: Adsorption vs. substitution effects on the electronic and geometric structures and oxygen vacancies [J]. Physical Chemistry Chemical Physics, 2016, 18(16): 11139-11149.
CHEN X H, YE R P, SUN C Y, et al. Optimizing low-temperature CO2 methanation through frustrated Lewis pairs on Ni/CeO2 catalysts [J]. Chemical Engineering Journal, 2024, 484: 149471.
XIE Y, CHEN J J, WU X, et al. Frustrated lewis pairs boosting low-temperature CO2 methanation performance over Ni/CeO2 nanocatalysts [J]. ACS Catalysis, 2022, 12(17): 10587-10602.
LI L, ZENG W Q, SONG M X, et al. Research progress and reaction mechanism of CO2 methanation over Ni-based catalysts at low temperature: A review [J]. Catalysts, 2022, 12(2): 244.
HONGMANOROM P, ASHOK J, CHIRAWATKUL P, et al. Interfacial synergistic catalysis over Ni nanoparticles encapsulated in mesoporous ceria for CO2 methanation [J]. Applied Catalysis B: Environmental, 2021, 297: 120454.
TADA S, SHIMIZU T, KAMEYAMA H, et al. Ni/CeO2 catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures [J]. International Journal of Hydrogen Energy, 2012, 37(7): 5527-5531.
ALARCÓN A, GUILERA J, DÍAZ J A, et al. Optimization of nickel and ceria catalyst content for synthetic natural gas production through CO2 methanation [J]. Fuel Processing Technology, 2019, 193: 114-122.
王文贞, 韩筝, 安霞, 等. 硬模板法合成介孔金属氧化物的研究进展 [J]. 应用化工, 2016, 45(6): 1134-1139.
WANG W Z, HAN Z, AN X, et al. Progress on synthesis of mesoporous metal oxides by hard-template method [J]. Applied Chemical Industry, 2016, 45(6): 1134-1139.
ZHOU G L, LIU H R, CUI K K, et al. Role of surface Ni and Ce species of Ni/CeO2 catalyst in CO2 methanation [J]. Applied Surface Science, 2016, 383: 248-252.
YE R P, LI Q H, GONG W B, et al. High-performance of nanostructured Ni/CeO2 catalyst on CO2 methanation [J]. Applied Catalysis B: Environmental, 2020, 268: 118474.
MA Y, LIU J, CHU M, et al. Enhanced low-temperature activity of CO2 methanation over Ni/CeO2 catalyst [J]. Catalysis Letters, 2021, 152(3): 872-882.
TANG X, SONG C Q, LI H B, et al. Thermally stable Ni foam-supported inverse CeAlOx/Ni ensemble as an active structured catalyst for CO2 hydrogenation to methane [J]. Nature Communications, 2024, 15(1): 3115.
ZHANG Z H, FENG K, YAN B H. Enhanced Ni-Ce interactions to enable efficient low-temperature catalytic CO2 methanation [J]. Catalysis Science & Technology, 2022, 12: 4698-4708.
FU H, LIAN H L. Optimizing low-temperature CO2 methanation with aluminum-doped Ni/CeO2 catalysts: Insights into reaction pathway adjustments and strong metal-support interactions [J]. Chemical Engineering Journal, 2024, 489: 151021.
XUE J J, XIE J W, LIU W Y, et al. Electrospun nnofibers: New concepts, materials, and applications [J]. Accounts of Chemical Research, 2017, 50(8): 1976-1987.
HU F Y, YE R P, JIN C K, et al. Ni nanoparticles enclosed in highly mesoporous nanofibers with oxygen vacancies for efficient CO2 methanation [J]. Applied Catalysis B: Environmental, 2022, 317: 121715.
RUI N, ZHANG X S, ZHANG F, et al. Highly active Ni/CeO2 catalyst for CO2 methanation: Preparation and characterization [J]. Applied Catalysis B: Environmental, 2021, 282: 119581.
HU F Y, JIN C K, LIM K H, et al. Promoting hydrogen spillover of NiFe/CeO2 catalyst with plasma-treatment for CO2 methanation [J]. Fuel Processing Technology, 2023, 250: 107873.
YU Y, CHAN Y M, BIAN Z F, et al. Enhanced performance and selectivity of CO2 methanation over g-C3N4 assisted synthesis of Ni CeO2 catalyst: Kinetics and DRIFTS studies [J]. International Journal of Hydrogen Energy, 2018, 43(32): 15191-15204.
TADA S, IKEDA S, SHIMODA N, et al. Sponge Ni catalyst with high activity in CO2 methanation [J]. International Journal of Hydrogen Energy, 2017, 42(51): 30126-30134.
ZHOU G L, LIU H R, CUI K K, et al. Methanation of carbon dioxide over Ni/CeO2 catalysts: Effects of support CeO2 structure [J]. International Journal of Hydrogen Energy, 2017, 42(25): 16108-16117.
FUKUHARA C, HAYAKAWA K, SUZUKI Y, et al. A novel nickel-based structured catalyst for CO2 methanation: A honeycomb-type Ni/CeO2 catalyst to transform greenhouse gas into useful resources [J]. Applied Catalysis A: General, 2017, 532: 12-18.
IGLESIAS I, QUINDIMIL A, MARIÑO F, et al. Zr promotion effect in CO2 methanation over ceria supported nickel catalysts [J]. International Journal of Hydrogen Energy, 2019, 44(3): 1710-1719.
GUILERA J, DEL VALLE J, ALARCÓN A, et al. Metal-oxide promoted Ni/Al2O3 as CO2 methanation micro-size catalysts [J]. Journal of CO2 Utilization, 2019, 30: 11-17.
FENG X Q, WANG K, ZHOU M X, et al. Metal organic framework derived Ni/CeO2 catalyst with highly dispersed ultra-fine Ni nanoparticles: Impregnation synthesis and the application in CO2 methanation [J]. Ceramics International, 2021, 47(9): 12366-12374.
ZHANG Z Q, TONG Y Y, FANG X Z, et al. Interface-dependent activity and selectivity for CO2 hydrogenation on Ni/CeO2 and Ni/Ce0.9Sn0.1Ox [J]. Fuel, 2022, 316: 123191.
ASHOK J, ANG M L, KAWI S. Enhanced activity of CO2 methanation over Ni/CeO2-ZrO2 catalysts: Influence of preparation methods [J]. Catalysis Today, 2017, 281: 304-311.
WANG W, CHU W, WANG N, et al. Mesoporous nickel catalyst supported on multi-walled carbon nanotubes for carbon dioxide methanation [J]. International Journal of Hydrogen Energy, 2016, 41(2): 967-975.
WANG X L, ZHU L J, LIU Y C, et al. CO2 methanation on the catalyst of Ni/MCM-41 promoted with CeO2 [J]. Science of the Total Environment, 2018, 625: 686-695.
DU Y X, QIN C, XU Y F, et al. Ni nanoparticles dispersed on oxygen vacancies-rich CeO2 nanoplates for enhanced low-temperature CO2 methanation performance [J]. Chemical Engineering Journal, 2021, 418: 129402.
ZHAI P, XU C, GAO R, et al. Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-zodulated Fe5C2 catalyst [J]. Angewandte Chemie International Edition, 2016, 55(34): 9902-9907.
VITA A, ITALIANO C, PINO L, et al. Activity and stability of powder and monolith-coated Ni/GDC catalysts for CO2 methanation [J]. Applied Catalysis B: Environmental, 2018, 226: 384-395.
BEIERLEIN D, HÄUSSERMANN D, PFEIFER M, et al. Is the CO2 methanation on highly loaded Ni-Al2O3 catalysts really structure-sensitive? [J]. Applied Catalysis B: Environmental, 2019, 247: 200-219.
ZHENG H, LIAO W Q, DING J Q, et al. Unveiling the key factors in determining the activity and selectivity of CO2 hydrogenation over Ni/CeO2 catalysts [J]. ACS Catalysis, 2022, 12(24): 15451-15462.
LIN L L, GERLAK C A, LIU C, et al. Effect of Ni particle size on the production of renewable methane from CO2 over Ni/CeO2 catalyst [J]. Journal of Energy Chemistry, 2021, 61: 602-611.
CHEN Y M, QIU B C, LIU Y, et al. An active and stable nickel-based catalyst with embedment structure for CO2 methanation [J]. Applied Catalysis B: Environmental, 2020, 269: 118801.
WEN X Y, XU L L, CHEN M D, et al. Exploring the influence of nickel precursors on constructing efficient Ni-based CO2 methanation catalysts assisted with in-situ technologies [J]. Applied Catalysis B: Environmental, 2021, 297: 120486.
YAN X L, SUN W, FAN L M, et al. Nickel@Siloxene catalytic nanosheets for high-performance CO2 methanation [J]. Nature Communications, 2019, 10(1): 2608.
VOGT C, GROENEVELD E, KAMSMA G, et al. Unravelling structure sensitivity in CO2 hydrogenation over nickel [J]. Nature Catalysis, 2018, 1(2): 127-134.
ALJISHI A, VEILLEUX G, LALINDE J A H, et al. The effect of synthesis parameters on ordered mesoporous nickel alumina catalyst for CO2 methanation [J]. Applied Catalysis A: General, 2018, 549: 263-272.
张晓俐, 古芳娜, 苏发兵, 等. CO2甲烷化镍基催化剂研究进展 [J]. 洁净煤技术, 2022, 28(4): 1-17.
ZHAO X L, GU F N, SU F B, et al. Research progress of nickel-based catalysts for carbon dioxide methanation [J]. Clean Coal Technology, 2022, 28(4): 1-17.
MANGLA A, DEO G, APTE P A. NiFe local ordering in segregated Ni3Fe alloys: A simulation study using angular dependent potential [J]. Computational Materials Science, 2018, 153: 449-460.
SERRER M A, GAUR A, JELIC J, et al. Structural dynamics in Ni-Fe catalysts during CO2 methanation: Role of iron oxide clusters [J]. Catalysis Science & Technology, 2020, 10(22): 7542-7554.
ZHU H W, RAZZAQ R, LI C S, et al. Catalytic methanation of carbon dioxide by active oxygen material CexZr1-xO2 supported Ni-Co bimetallic nanocatalysts [J]. AIChE Journal, 2013, 59(7): 2567-2576.
CHEN H H, GUO W, FAN X L. Mechanochemical synthesis of bimetallic NiCo supported on a CeO2 catalyst with less metal loading for non-thermal plasma catalytic CO2 hydrogenation [J]. ACS Engineering Au, 2022, 3(1): 7-16.
孙敬方, 葛成艳, 安冬琦, 等. 稀土铈基催化材料氧空位的表征方法综述 [J]. 化工学报 2020, 71(8): 3403-3415.
SUN J F, GE C Y, AN D Q, et al. Review on characterization methods of oxygen vacancy in rare earth cerium-based catalysts [J]. CIESC Journal, 2020, 71(8): 3403-3415.
黄佳妍, 冯刚, 叶闰平, 等. 不同Fe含量改性CeO2纳米管负载金催化CO氧化[J]. 南昌大学学报(工科版), 2022, 44(3): 205-210.
HUANG J Y, FENG G, YE R P,et al. Gold supported on modified CeO2 nanotubes with different Fe contents for CO catalytic oxidation [J]. Journal of Nanchang University (Engineering & Technology), 2022, 44(3): 205-210.
BISHOP S R, STEFANIK T S, TULLER H L. Electrical conductivity and defect equilibria of Pr0.1Ce0.9O2-δ [J]. Physical Chemistry Chemical Physics, 2011, 13(21): 10165-10173.
PAN Q S, PENG J X, SUN T, et al. Insight into the reaction route of CO2 methanation: Promotion effect of medium basic sites [J]. Catalysis Communications, 2014, 45: 74-78.
ZHANG T F, WANG W W, GU F N, et al. Enhancing the low-temperature CO2 methanation over Ni/La-CeO2 catalyst: The effects of surface oxygen vacancy and basic site on the catalytic performance [J]. Applied Catalysis B: Environmental, 2022, 312: 121385.
TANG R, ULLAH N, HUI Y J, et al. Enhanced CO2 methanation activity over Ni/CeO2 catalyst by one-pot method [J]. Molecular Catalysis, 2021, 508: 111602.
JOMJAREE T, SINTUYA P, SRIFA A, et al. Catalytic performance of Ni catalysts supported on CeO2 with different morphologies for low-temperature CO2 methanation [J]. Catalysis Today, 2021, 375: 234-244.
SCHREITER N, KIRCHNER J, KURETI S. A DRIFTS and TPD study on the methanation of CO2 on Ni/Al2O3 catalyst [J]. Catalysis Communications, 2020, 140: 105988.
SONG F J, ZHONG Q, YU Y, et al. Obtaining well-dispersed Ni/Al2O3 catalyst for CO2 methanation with a microwave-assisted method [J]. International Journal of Hydrogen Energy, 2017, 42(7): 4174-4183.
LIN J H, MA C P, LUO J, et al. Preparation of Ni based mesoporous Al2O3 catalyst with enhanced CO2 methanation performance [J]. RSC Advances, 2019, 9(15): 8684-8694.
ZHANG J, REN B, FAN G, et al. Exceptional low-temperature activity of a perovskite-type AlCeO3 solid solution-supported Ni-based nanocatalyst towards CO2 methanation [J]. Catalysis Science & Technology, 2021, 11(11): 3894-3904.
XU Y, CHEN Y, LI J, et al. Improved low-temperature activity of Ni-Ce/γ-Al2O3 catalyst with layer structural precursor prepared by cold plasma for CO2 methanation [J]. International Journal of Hydrogen Energy, 2017, 42(18): 13085-13091.
DAROUGHEGI R, MESHKANI F, REZAEI M. Enhanced low-temperature activity of CO2 methanation over ceria-promoted Ni-Al2O3 nanocatalyst [J]. Chemical Engineering Science, 2021, 230: 116194.
LIU H Z, ZOU X J, WANG X G, et al. Effect of CeO2 addition on Ni/Al2O3 catalysts for methanation of carbon dioxide with hydrogen [J]. Journal of Natural Gas Chemistry, 2012, 21(6): 703-707.
ZHAO K C, WANG W H, LI Z H. Highly efficient Ni/ZrO2 catalysts prepared via combustion method for CO2 methanation [J]. Journal of CO2 Utilization, 2016, 16: 236-244.
QUAN Y H, ZHANG N, ZHANG Z L, et al. Enhanced performance of Ni catalysts supported on ZrO2 nanosheets for CO2 methanation: Effects of support morphology and chelating ligands [J]. International Journal of Hydrogen Energy, 2021, 46(27): 14395-14406.
JIA X Y, ZHANG X S, RUI N, et al. Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity [J]. Applied Catalysis B: Environmental, 2019, 244: 159-169.
YE R P, MA L X, HONG X L, et al. Boosting low-temperature CO2 hydrogenation over Ni‐based catalysts by tuning strong metal-support interactions [J]. Angewandte Chemie International Edition, 2023: e202317669.
PASTOR-PÉREZ L, SACHÉ E L, JONES C, et al. Synthetic natural gas production from CO2 over Ni-x/CeO2-ZrO2 (x = Fe, Co) catalysts: Influence of promoters and space velocity [J]. Catalysis Today, 2018, 317: 108-113.
VRIJBURG W L, VAN HELDEN J W A, PARASTAEV A, et al. Ceria-zirconia encapsulated Ni nanoparticles for CO2 methanation [J]. Catalysis Science & Technology, 2019, 9(18): 5001-5010.
XIONG K, ROBERTSON J. Electronic structure of oxygen vacancies in La2O3, Lu2O3 and LaLuO3 [J]. Microelectronic Engineering, 2009, 86(7/8/9): 1672-1675.
CHEN X H, YE R P, JIN C K, et al. A highly efficient Ni/3DOM-La2O2CO3 catalyst with ordered macroporous structure for CO2 methanation [J]. Journal of Catalysis, 2023, 428: 115129.
SONG H L, YANG J, ZHAO J, et al. Methanation of carbon dioxide over a highly dispersed Ni/La2O3 catalyst [J]. Chinese Journal of Catalysis, 2010, 31(1): 21-23.
SIAKAVELAS G I, CHARISIOU N D, ALKHOORI A, et al. Highly selective and stable Ni/La-M (M = Sm, Pr, and Mg)-CeO2 catalysts for CO2 methanation [J]. Journal of CO2 Utilization, 2021, 51: 101618.
HU F Y, JIN C K, WU R D, et al. Enhancement of hollow Ni/CeO2-Co3O4 for CO2 methanation: From CO2 adsorption and activation by synergistic effects [J]. Chemical Engineering Journal, 2023, 461: 142108.
TAUSTER S J. Strong metal-support interactions [J]. Accounts of Chemical Research, 1987, 20: 390-394.
VAN DEELEN T W, HERNÁNDEZ MEJÍA C, DE JONG K P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity [J]. Nature Catalysis, 2019, 2(11): 955-970.
TANG H L, SU Y, ZHANG B S, et al. Classical strong metal-support interactions between gold nanoparticles and titanium dioxide [J]. Science Advances, 2017, 3: e1700231.
DAELMAN N, CAPDEVILA-CORTADA M, LÓPEZ N. Dynamic charge and oxidation state of Pt/CeO2 single-atom catalysts [J]. Nature Materials, 2019, 18(11): 1215-1221.
LIU J Y. Advanced electron microscopy of metal-support interactions in supported metal catalysts [J]. ChemCatChem, 2011, 3(6): 934-948.
LI M S, VAN VEEN A C. Tuning the catalytic performance of Ni-catalysed dry reforming of methane and carbon deposition via Ni-CeO2-interaction [J]. Applied Catalysis B: Environmental, 2018, 237: 641-648.
HERNÁNDEZ MEJÍA C, VOGT C, WECKHUYSEN B M, et al. Stable niobia-supported nickel catalysts for the hydrogenation of carbon monoxide to hydrocarbons [J]. Catalysis Today, 2020, 343: 56-62.
GUO Y, MEI S, YUAN K, et al. Low-temperature CO2 methanation over CeO2-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal-support interactions and H-spillover effect [J]. ACS Catalysis, 2018, 8(7): 6203-6215.
SUCHORSKI Y, KOZLOV S M, BESPALOV I, et al. The role of metal/oxide interfaces for long-range metal particle activation during CO oxidation [J]. Nature Materials, 2018, 17(6): 519-522.
LI S W, XU Y, CHEN Y F, et al. Tuning the selectivity of catalytic carbon dioxide hydrogenation over iridium/cerium oxide catalysts with a strong metal-support interaction [J]. Angewandte Chemie International Edition, 2017, 56(36): 10761-10765.
TANG H L, SU Y, GUO Y L, et al. Oxidative strong metal-support interactions (OMSI) of supported platinum-group metal catalysts [J]. Chemical Science, 2018, 9(32): 6679-6684.
XU M, HE S, CHEN H, et al. TiO2-x-modified Ni nanocatalyst with tunable metal-support interaction for water-gas shift reaction [J]. ACS Catalysis, 2017, 7(11): 7600-7609.
WANG L, ZHANG J, ZHU Y H, et al. Strong metal-support interactions achieved by hydroxide-to-oxide support transformation for preparation of sinter-resistant gold nanoparticle catalysts [J]. ACS Catalysis, 2017, 7(11): 7461-7465.
LIN S X, HAO Z W, SHEN J D, et al. Enhancing the CO2 methanation activity of Ni/CeO2 via activation treatment-determined metal-support interaction [J]. Journal of Energy Chemistry, 2021, 59: 334-342.
PU T C, CHEN J C, TU W F, et al. Dependency of CO2 methanation on the strong metal-support interaction for supported Ni/CeO2 catalysts [J]. Journal of Catalysis, 2022, 413: 821-828.
ZHOU J, GAO Z, XIANG G L, et al. Interfacial compatibility critically controls Ru/TiO2 metal-support interaction modes in CO2 hydrogenation [J]. Nature Communications, 2022, 13(1): 327.
WANG J, YAO N, LIU B, et al. Deposition of carbon species on the surface of metal: As a poison or a promoter for the long-term stability of Ni/SiO2 methanation catalyst? [J]. Chemical Engineering Journal, 2017, 322: 339-345.
ZHANG X, SUN W J, CHU W. Effect of glow discharge plasma treatment on the performance of Ni/SiO2 catalyst in CO2 methanation [J]. Journal of Fuel Chemistry and Technology, 2013, 41(1): 96-101.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构