浏览全部资源
扫码关注微信
1.上海交通大学 化学化工学院,上海 200240
2.太原理工大学 化学工程与技术学院,山西 太原 030024
邹家富(2000—),硕士研究生,研究方向为液态储氢,E-mail:zoujiafu0@gmail.com。
杨艳(1989—),硕士,研究方向为氢能安全储运,E-mail:yangyan2019@sjtu.edu.cn。
纸质出版日期:2024-09-25,
收稿日期:2024-04-23,
修回日期:2024-05-29,
移动端阅览
邹家富,闫晓亮,刘鹏等.萘-十氢萘有机液体储氢技术研究进展[J].低碳化学与化工,2024,49(09):97-105.
ZOU Jiafu,YAN Xiaoliang,LIU Peng,et al.Research progress on naphthalene-decalin organic liquid hydrogen storage technology[J].Low-carbon Chemistry and Chemical Engineering,2024,49(09):97-105.
邹家富,闫晓亮,刘鹏等.萘-十氢萘有机液体储氢技术研究进展[J].低碳化学与化工,2024,49(09):97-105. DOI: 10.12434/j.issn.2097-2547.20240174.
ZOU Jiafu,YAN Xiaoliang,LIU Peng,et al.Research progress on naphthalene-decalin organic liquid hydrogen storage technology[J].Low-carbon Chemistry and Chemical Engineering,2024,49(09):97-105. DOI: 10.12434/j.issn.2097-2547.20240174.
氢气未被高效存储是制约绿色氢能大规模应用的瓶颈。相比现有储氢技术,萘-十氢萘有机液体储氢作为一种极具应用前景的储氢技术,有望为未来能源储存和利用提供一种全新、高效的解决方案。萘-十氢萘储氢体系可提升有机液体储氢量、完善加氢/脱氢循环以及提高经济性。综述了萘-十氢萘有机液体储氢技术研究进展,分析了萘加氢和十氢萘脱氢机理,讨论了萘加氢与十氢萘脱氢的催化剂结构、工艺过程和技术经济性等,总结了萘-十氢萘有机液体储氢技术面临的主要挑战。从需求关键点出发,通过深入探究十氢萘脱氢反应机理,从原子角度设计高效催化剂,构筑催化剂表面结构,提高十氢萘脱氢效率,以推动萘-十氢萘有机液体储氢技术的商业化。
The inefficient storage hydrogen is the bottleneck that restricts the large-scale application of green hydrogen energy. Compared with the existing hydrogen storage technologies
naphthalene-decalin organic liquid hydrogen storage
as a highly promising hydrogen storage technology
is expected to provide a new and efficient solution for future energy storage and utilization. The naphthalene-decalin hydrogen storage system can enhance the hydrogen storage capacity of organic liquids
improve the hydrogenation/dehydrogenation cycle and increase economic efficiency. The research progress on naphthalene-decalin organic liquid hydrogen storage technology was reviewed
and the mechanisms of naphthalene hydrogenation and decalin dehydrogenation were analyzed
and the structures of catalysts
processes and technical economy of naphthalene hydrogenation and decalin dehydrogenation were discussed
and the main challenges of naphthalene-decalin organic liquid hydrogen storage technology were summarized. Starting from the key points of demand
through in-depth exploration of the mechanism of decalin dehydrogenation
highly efficient catalysts from the atomic point of view are designed and structures of catalyst surface are constructed to improve the efficiency of decalin dehydrogenation and promote the commercialization of naphthalene-decalin organic liquid hydrogen storage technology.
萘十氢萘加氢脱氢
naphthalenedecalinhydrogenationdehydrogenation
许炜, 陶占良, 陈军. 储氢研究进展[J]. 化学进展, 2006, 18(2/3): 200-210.
XU W, TAO Z L, CHEN J. Progress of research on hydrogen storage [J]. Progress in Chemistry, 2006, 18(2/3): 200-210.
李璐伶, 樊栓狮, 陈秋雄, 等. 储氢技术研究现状及展望[J]. 储能科学与技术, 2018, 7(4): 586-594.
LI L L, FAN S S, CHEN Q X, et al. Hydrogen storage technology: Current status and prospects [J]. Energy Storage Science and Technology, 2018, 7(4): 586-594.
金星星. 储氢材料研究进展[J]. 科技创新与应用, 2023, 13(5): 76-79.
JIN X X. Progress in hydrogen storage materials [J]. Technology Innovation and Application, 2023, 13(5): 76-79.
高勇, 陈慧, 刘锋, 等. 有机液体储氢技术中催化剂应用的研究进展[J]. 贵金属, 2023, 44(1): 86-91.
GAO Y, CHEN H, LIU F, et al. Research progress in the application of catalysts for liquid organic hydrogen carrier technology [J]. Precious Metals, 2023, 44(1): 86-91.
寇小文, 顾雄毅, 李平. 氢能载体十氢萘制氢表观动力学[J]. 化工进展, 2015, 34(9): 3279-3285.
KOU X W, GU X Y, LI P. Apparent kinetics of hydrogen production from hydrogen carrier decalin [J]. Chemical Industry and Engineering Progress, 2015, 34(9): 3279-3285.
LI H, CAO X, LIU Y, et al. Safety of hydrogen storage and transportation: An overview on mechanisms, techniques, and challenges [J]. Energy Reports, 2022, 8: 6258-6269.
ZHANG X F, ZHANG Q M, ZHAO A Q, et al. Naphthalene hydrogenation over silica supported nickel phosphide in the absence and presence of N-containing compounds [J]. Energy & Fuels, 2010, 24(7): 3796-3803.
SUTTISAWAT Y, SAKAI H, ABE M, et al. Microwave effect in the dehydrogenation of tetralin and decalin with a fixed-bed reactor [J]. International Journal of Hydrogen Energy, 2012, 37(4): 3242-3250.
RAUTANEN P A, LYLYKANGAS M S, AITTAMAA J R, et al. Liquid-phase hydrogenation of naphthalene and tetralin on Ni/Al2O3: Kinetic modeling [J]. Industrial & Engineering Chemistry Research, 2002, 41(24): 5966-5975.
荆洁颖, 李泽, 赵泽敏, 等. 活性金属Ni d电荷密度对Ni2P/Al2O3催化剂菲加氢性能的影响[J]. 洁净煤技术, 2024, 30(2): 102-113.
JING J Y, LI Z, ZHAO Z M, et al. Optimization of active metal Ni d charge density for efficient phenanthrene hydrogenation over Ni2P/Al2O3 catalyst [J]. Clean Coal Technology, 2024, 30(2): 102-113.
王斐, 钟梅, 李建, 等. 机械球磨法制备NiMo催化剂及其在菲加氢中的应用[J]. 燃料化学学报, 2023, 51(2): 165-174.
WANG F, ZHONG M, LI J, et al. Preparation of mesoporous NiMo catalyst by mechanical ball milling for hydrogenation of phenanthrene [J]. Journal of Fuel Chemistry and Technology, 2023, 51(2): 165-174.
YAO J H, XU Z K, CHENG S, et al. Pt/Al2O3 as efficient catalyst for the dehydrogenation of dodecahydro-N-ethylcarbazole [J]. Chemical Engineering Journal, 2024, 491: 152100.
VEREVKIN S P, SAMAROV A A, VOSTRIKOV S V. Thermodynamics of reversible hydrogen storage: Does alkoxy-substitution of naphthalene yield functional advantages for LOHC systems? [J]. The Journal of Chemical Physics, 2024, 160(15): 154709.
刘凯, 田原宇, 张君涛. 萘选择性催化加氢催化剂研究进展[J]. 现代化工, 2018, 38(9): 45-49.
LIU K, TIAN Y Y, ZHANG J T. Research progress on catalysts for selective hydrogenation of naphthalene [J]. Modern Chemical Industry, 2018, 38 (9): 45-49.
单贤根, 曹雪萍, 舒歌平, 等. 煤直接液化条件下萘-四氢萘加氢转化反应行为[J]. 煤炭转化, 2020, 43(5): 61-68.
SHAN X G, CAO X P, SHU G P, et al. Hydroconversion behavior of naphthalene-tetrahydronaphthalene under direct coal liquefaction [J]. Coal Conversion, 2020, 43(5): 61-68.
夏良燕, 夏芝香, 方梦祥, 等. 煤焦油中芳烃(萘)的加氢饱和试验[J]. 浙江大学学报(工学版), 2015, 49(3): 578-584.
XIA L Y, XIA Z X, FANG M X, et al. Hydrogenation saturation of aromatie compounds (naphthalenein) in coal tar [J]. Journal of Zhejiang University: Engineering Seience, 2015, 49(3): 578-584.
张媛媛, 赵静, 鲁锡兰, 等. 有机液体储氢材料的研究进展[J]. 化工进展, 2016, 35(9): 2869-2874.
ZHANG Y Y, ZHAO J, LU X L, et al. Progress in liquid organic hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2869-2874.
周一鸣, 齐随涛, 周宇亮, 等. 多环芳烃类液体有机氢载体储放氢技术研究进展[J]. 化工进展, 2023, 42(2): 1000-1007.
ZHOU Y M, QI S T, ZHOU Y L, et al. Research progress in the hydrogenation and dehydrogenation technology of polyeyclic aromatie hydrocarbon liquid organie hydrogen carriers [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1000-1007.
王兰江, 梁瑜, 汤琼, 等. 快速热解铂前体合成高分散的Pt/HY催化剂及其萘深度加氢性能[J]. 化工进展, 2023, 42(8): 4159-4166.
WANG L J, LIANG Y, TANG Q, et al. Synthesis of highly dispersed Pt/HY catalyst by rapid pyrolysis of platinum precursors and its performance for deep naphthalene hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4159-4166.
齐随涛, 黄俊, 陈昊, 等. 有机氢化物可逆储氢循环中脱氢催化剂的研究进展[J]. 化学学报, 2012, 70(24): 2467-2474.
QI S T, HUANG J, CHEN H, et al. Development of dehydrogenation catalyst for reversible hydrogen storage in organic hydrides [J]. Acta Chimica Sinica, 2012, 70(24): 2467-2474.
郑修新, 赵甲, 孙国方, 等. 萘加氢催化剂的研究进展[J]. 化工进展, 2015, 34(5): 1295-1299.
ZHENG X X, ZHAO J, SUN G F, et al. Research progress in catalysts for the hydrogenation of naphthalene [J]. Chemical Industry and Engineering Progress, 2015, 34(5): 1295-1299.
REN S B, WEN H Z, CAO X Z, et al. Promotion of Ni/clay catalytic activity for hydrogenation of naphthalene by organic modification of clay [J]. Chinese Journal of Catalysis, 2014, 35(4): 546-552.
李贺, 殷长龙, 赵雪萍, 等. 萘、四氢萘和十氢萘的加氢或脱氢反应与催化剂的研究进展[J]. 石油化工, 2014, 43(8): 971-979.
LI H, YIN C L, ZHAO X P, et al. Progresses in hydrogenation or dehydrogenation of naphthalene tetralin and decalin, and the catalysts [J]. Petrochemical Technology, 2014, 43(8): 971-979.
SATO K, IWATA Y, YONEDA T, et al. Hydrocracking of diphenylmethane and tetralin over bifunctional NiW sulfide catalysts supported on three kinds of zeolites [J]. Catalysis Today, 1998, 45(1/2/3/4): 367-374.
SATO K, IWATA Y, YONEDA T, et al. Liquid-phase hydrogenation kinetics of multicomponent aromatic mixtures on Ni/Al2O3 [J]. Industrial & Engineering Chemistry Research, 2002, 41(23): 5632-5639.
SATO K, IWATA Y, MIKI Y, et al. Hydrocracking of tetralin over NiW/USY zeolite catalysts: For the improvement of heavy-oil upgrading catalysts [J]. Journal of Catalysis, 1999, 186(1): 45-56.
RITCHIE A W, NIXON A C. Dehydrogenation of decalin. Effect of reaction variables on selectivity and catalyst stability [J]. Industrial & Engineering Chemistry Research, 1971, 10(2): 145-153.
FEINER R, SCHWAIGER N, PUCHER H, et al. Chemical loop systems for biochar liquefaction: Hydrogenation of naphthalene [J]. RSC Advances, 2014, 4(66): 34955-34962.
TUO Y X, YANG L, CHENG H Y, et al. Density functional theory study of decalin dehydrogenation for hydrogen release on Pt(111) and Pt(211) [J]. International Journal of Hydrogen Energy, 2018, 43(42): 19575-19588.
WU Y, ZHONG L X. An integrated energy analysis framework for evaluating the application of hydrogen-based energy storage systems in achieving net zero energy buildings and cities in Canada [J]. Energy Conversion and Management, 2023, 286(15): 117066.
LIN S D, SONG C. Noble metal catalysts for low-temperature naphthalene hydrogenation in the presence of benzothiophene [J]. Catalysis Today, 1996, 31: 93-104.
LIU J J, ZHANG H F, LU N Y, et al. Influence of acidity of mesoporous ZSM-5-supported Pt on naphthalene hydrogenation [J]. Industrial & Engineering Chemistry Research, 2020, 59(3): 1056-1064.
LIANG Y, WANG L J, LI X K, et al. Ozonation assisted synthesis of well-dispersed Pt on HY zeolite as highly efficient catalyst for deep hydrogenation of naphthalene [J]. Applied Catalysis A: General, 2023, 668: 119490.
USMAN M, LI D, LI C S, et al. Highly selective and stable hydrogenation of heavy aromatic-naphthalene over transition metal phosphides [J]. Science China Chemistry, 2014, 58(4): 738-746.
ZHANG X F, ZHANG Q M, GUAN J, et al. Hydrogenation of naphthalene on nickel phosphide supported on silica [J]. Asia-Pacific Journal of Chemical Engineering, 2009, 4(5): 574-580.
KIM K, OH J, KIM T W, et al. Different catalytic behaviors of Pd and Pt metals in decalin dehydrogenation to naphthalene [J]. Catalysis Science & Technology, 2017, 7(17): 3728-3735.
JIANG N, RAO K S R, JIN M J, et al. Effect of hydrogen spillover in decalin dehydrogenation over supported Pt catalysts [J]. Applied Catalysis A: General, 2012, 425/426: 62-67.
MARTYNENKO E A, PIMERZIN A A, SAVINOV A A, et al. Hydrogen release from decalin by catalytic dehydrogenation over supported platinum catalysts [J]. Topics in Catalysis, 2020, 63(1/2): 178-186.
QI S T, LI Y Y, YUE J Q, et al. Hydrogen production from decalin dehydrogenation over Pt-Ni/C bimetallic catalysts [J]. Chinese Journal of Catalysis, 2014, 35(11): 1833-1839.
LI L Q, VELLAYANI ARAVIND P, WOUDSTRA T, et al. Assessing the waste heat recovery potential of liquid organic hydrogen carrier chains [J]. Energy Conversion and Management, 2023, 276: 116555.
TSOGT N, GBADAGO D Q, HWANG S. Exploring the potential of liquid organic hydrogen carrier (LOHC) system for efficient hydrogen storage and transport: A techno-economic and energy analysis perspective [J]. Energy Conversion and Management, 2024, 299: 117856.
张成刚, 潘鹤林, 黄婕. 分壁塔分离萘及其加氢产物的稳态研究[J]. 现代化工, 2021, 41(5): 230-234.
ZHANG C G, PAN H L, HUANG J. Steady state simulation for separation of naphthalene from itshydrogenation products by divided-wall column [J]. Modern Chemical Industry, 2021, 41(5): 230-234.
RAO N, LELE A K, PATWARDHAN A W. Optimization of liquid organic hydrogen carrier (LOHC) dehydrogenation system [J]. International Journal of Hydrogen Energy, 2022, 47(66): 28530-28547.
ZHANG X B, WANG A Q, WANG X B, et al. Theoretical analysis of hydrogen solubility in direct coal liquefaction solvents [J]. International Journal of Coal Science & Technology, 2024, 11(1): 28.
王祥瑞, 杨扬, 邹雄, 等. 重汽油萃取精馏制溶剂油工艺设计与模拟[J]. 现代化工, 2022, 42(2): 229-235.
WANG X R, YANG Y, ZOU X, et al. Process design and simulation for production of solvent oil by extractive distillation of heavy gasoline [J]. Modern Chemical Industry, 2022, 42(2): 229-235.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构