浏览全部资源
扫码关注微信
1.中北大学 化学与化工学院,山西 太原 030051
2.中国科学院 山西煤炭化学研究所 煤炭高效低碳利用全国重点实验室,山西 太原 030001
徐浩浩(1999—),硕士研究生,研究方向为C1化学,E-mail:1138274265@qq.com。
房克功(1975—),博士,研究员,研究方向为C1化学,E-mail:kgfang@sxicc.ac.cn;
宋江锋(1978—),博士,教授,研究方向为无机化学,E-mail:jfsong0129@ nuc.edu.cn。
纸质出版日期:2024-10-25,
收稿日期:2024-04-19,
修回日期:2024-05-05,
移动端阅览
徐浩浩,穆晓亮,房克功等.氧空穴ZrO2复合CuFe催化剂合成气制高级醇反应性能研究[J].低碳化学与化工,2024,49(10):11-19.
XU Haohao,MU Xiaoliang,FANG Kegong,et al.Study on reaction performances of oxygen-vacancies ZrO2 composite CuFe catalysts for syngas to higher alcohols[J].Low-carbon Chemistry and Chemical Engineering,2024,49(10):11-19.
徐浩浩,穆晓亮,房克功等.氧空穴ZrO2复合CuFe催化剂合成气制高级醇反应性能研究[J].低碳化学与化工,2024,49(10):11-19. DOI: 10.12434/j.issn.2097-2547.20240169.
XU Haohao,MU Xiaoliang,FANG Kegong,et al.Study on reaction performances of oxygen-vacancies ZrO2 composite CuFe catalysts for syngas to higher alcohols[J].Low-carbon Chemistry and Chemical Engineering,2024,49(10):11-19. DOI: 10.12434/j.issn.2097-2547.20240169.
合成气制高级醇具有重要的现实意义,催化剂的构建是合成气制高级醇技术的关键。分别采用碳酸钠共沉淀法和草酸凝胶沉淀法制得CuFe和富含氧空穴氧化锆(ZrO
2
-OV)组分,并将两者物理研磨混合制备了一系列复合催化剂CF-Z-
n
(其中CF、Z和
n
分别代表CuFe、ZrO
2
-OV和两者质量比),该复合催化剂CF-Z-
n
可有效提高醇产物中高级醇分布。采用EPR、N
2
吸/脱附、XRD、TEM、XPS、H
2
-TPR和CO-TPSR-MS等手段表征了催化剂的物理化学性质,并考察了催化剂催化合成气转化制备高级醇的反应性能。结果表明,富含氧空穴ZrO
2
可促进CO活化。富含氧空穴ZrO
2
与CuFe催化剂物理混合后,在复合催化剂CF-Z-
n
的表面形成了高碳贫氢的化学环境,能促进CO的转化和高级醇的生成。复合催化剂CF-Z-
n
的催化性能可通过调变
n
值来进行优化。在260 ℃、5 MPa和空速为4000 h
-1
的反应条件下,CF-Z-8催化剂的CO转化率为23.5%,总醇选择性为15.0%,其中高级醇质量占比可达96.1%。
The synthesis of higher alcohols from syngas is of great practical importance
and the construction of catalysts is the key to this technology. CuFe and zirconia with rich oxygen vacancies components (ZrO
2
-OV) were prepared by sodium carbonate co-precipitation and oxalic acid gel precipitation
respectively. A series of composite catalysts CF-Z-
n
(CF
Z and
n
stand for CuFe
ZrO
2
-OV and the mass ratio of the two
respectively) were prepared by physically milling and mixing the two components. The series of catalysts can effectively improve the distribution of higher alcohols in alcohol products. The physicochemical properties of the catalysts were characterized by EPR
N
2
adsorption/desorption
XRD
TEM
XPS
H
2
-TPR and CO-TPSR-MS
and the reaction performances of the catalysts for preparation of higher alcohols by syngas catalytic reforming was investigated. The results show that ZrO
2
with rich oxygen vacancies promotes CO activation. After physically mixing ZrO
2
with rich oxygen vacancies and CuFe catalyst
a high-carbon and hydrogen-poor chemical environment is formed on the catalyst surface
which facilitates the conversion of CO and generation of higher alcohols. The catalytic performance of the composite catalyst can be optimized by varying
n
values. Under the reaction conditions of 260 ℃
5 MPa and space velocity of 4000 h
-1
the CO conversion rate of CF-Z-8 is 23.5%
the selectivity of total alcohols of CF-Z-8 is 15.0%
and the mass proportion of higher alcohols can reach 96.1%.
CuFe催化剂氧空穴ZrO2合成气高级醇
CuFe catalystsoxygen vacanciesZrO2syngashigher alcohols
王新略, 穆晓亮, 韩念琛, 等.制备法对CuFe负载介孔SiO2催化剂合成气制低碳醇催化性能的影响[J]. 天然气化工—C1化学与化工, 2022, 47(4): 57-65.
WANG X L, MU X L, HAN N C, et al. Effect of preparation methods on catalytic performance of CuFe supported mesoporous SiO2 catalyst for syngas to higher alcohols [J]. Natural Gas Chemical Industry, 2022, 47(4): 57-65.
TIAN M, TIAN X, MA E J, et al. Investigation of the role of oxygen vacancies in CuZn catalysts for the formation of higher alcohols from syngas [J]. Fuel, 2024, 360: 130595.
张思敏, 栾春晖, 黄伟. 热解温度对CuZnAl催化剂CO加氢制备低碳醇性能的影响[J]. 天然气化工—C1化学与化工, 2022, 47(1): 51-58.
ZHANG S M, LUAN C H, HUANG W. Effects of pyrolysis temperature on performance of CuZnAl catalyst for CO hydrogenation to lower alcohols [J]. Natural Gas Chemical Industry, 2022, 47(1): 51-58.
GUPTA M, SMITH M L, SPIVEY J J. Heterogeneous catalytic conversion of dry syngas to ethanol and higher alcohols on Cu-based catalysts [J]. ACS Catalysis, 2011, 1(6): 641-656.
ZHOU W, CHENG K, KANG J C, et al. New horizon in C1 chemistry: Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels [J]. Chemical Society Reviews, 2019, 48(12): 3193-3228.
LIU J J, TAO R Z, GUO Z, et al. Selective adsorption of manganese onto rhodium for optimized Mn/Rh/SiO2 alcohol synthesis catalysts [J]. ChemCatChem, 2013, 5(12): 3665-3672.
MA C H, LI H Y, LIN G D, et al. Ni-decorated carbon nanotube-promoted Ni-Mo-K catalyst for highly efficient synthesis of higher alcohols from syngas [J]. Applied Catalysis B: Environmental, 2010, 100(1/2): 245-253.
王慧君, 武应全, 田少鹏, 等. F-T组分改性KCuZrO2催化剂上CO加氢合成异丁醇的性能研究[J]. 燃料化学学报, 2020, 48(3): 302-310.
WANG H J, WU Y Q, TIAN S P, et al. Study on the performance of F-T component modified KCuZrO2 catalyst for CO hydrogenation to isobutanol [J]. Journal of Fuel Chemistry and Technology, 2020, 48(3): 302-310.
ZHANG R G, WANG G R, WANG B J. Insights into the mechanism of ethanol formation from syngas on Cu and an expanded prediction of improved Cu-based catalyst [J]. Journal of Catalysis, 2013, 305: 238-255.
LIU B, LI Y F, DUAN Y M, et al. Effect of supports on performance of Cu-Fe based catalysts for higher alcohols synthesis from syngas [J]. Reaction Kinetics, Mechanisms and Catalysis, 2019, 128: 695-706.
HUANG C, ZHU C, ZHANG M W, et al. Design of efficient ZnO/ZrO2 modified CuCoAl catalysts for boosting higher alcohol synthesis in syngas conversion [J]. Applied Catalysis B: Environmental, 2022, 300: 120739.
GUO S X, LI Z S, YIN R, et al. Oxygen vacancy over CoMnOx catalysts boosts selective ethanol production in the higher alcohol synthesis from syngas [J]. ACS Catalysis, 2023, 13(21): 14404-14414.
QI X Z, LIN T J, AN Y L, et al. Regulating oxygen vacancies for enhanced higher oxygenate synthesis via syngas [J]. ACS Catalysis, 2023, 13(17): 11566-11579.
CHANG H H, GAO F F, LUO A L, et al. Oxygen vacancy promoted carbon dioxide activation over Cu/ZrO2 for CO2-to-methanol conversion [J]. Chemical Communications, 2023, 59(49): 7647-7650.
ZAERA F. Nanostructured materials for applications in heterogeneous catalysis [J]. Chemical Society Reviews, 2013, 42(7): 2746-2762.
GIONCO C, PAGANIN M C, GIMEALLO E, et al. Paramagnetic defects in polycrystalline zirconia: An EPR and DFT study [J]. Chemistry of Materials, 2013, 25(11): 2243-2253.
ZHANG Q H, KANG J C, WANG Y. Development of novel catalysts for Fischer-Tropsch synthesis: Tuning the product selectivity [J]. ChemCatChem, 2010, 2(9): 1030-1058.
JIA X Y, ZHANG X S, RUI N, et al. Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity [J]. Applied Catalysis B: Environmental, 2019, 244: 159-169.
TIAN M, TIAN X, MA E J, et al. Oxygen vacancy control of catalytic activity of Cu/ZnO for higher alcohols synthesis via incorporating Ga [J]. ACS Sustainable Chemistry & Engineering, 2023, 11(37): 13616-13627.
AHAVAN O, AIMMIRAD R, SAFA S, et al. CuO/Cu(OH)2 hierarchical nanostructures as bactericidal photocatalysts [J]. Journal of Materials Chemistry, 2011, 21(26): 9634-9640.
BIN H, HAN X Y, LIN M H, et al. Preparation of SiO2-coated CuFe catalysts for synthesis of higher alcohols from CO hydrogenation [J]. Journal of Fuel Chemistry and Technology, 2016, 44(2): 217-224.
LI D F, WANG Z C, HUANG J C, et al. Ultrafine CeO2 Nanodots embedded in porous ZrO2 for efficient and sustainable chlorine recycle through hydrochloric acid catalytic oxidation [J]. Chemistry Select, 2020, 5(40): 12442-12449.
HAN X Y, FANG K G, Sun Y H. Effects of metal promotion on CuMgFe catalysts derived from layered double hydroxides for higher alcohol synthesis via syngas [J]. RSC Advances, 2015, 5(64): 51868-51874.
SU J J, ZHANG Z P, FU D L, et al. Higher alcohols synthesis from syngas over CoCu/SiO2 catalysts: Dynamic structure and the role of Cu [J]. Journal of Catalysis, 2016, 336: 94-106.
QIN C, HOU B, WANG J G, et al. Crystal-plane-dependent Fischer-Tropsch performance of cobalt catalysts [J]. ACS Catalysis, 2018, 8(10): 9447-9455.
XU D, DING M Y, HONG X L, et al. Selective C2+ alcohol synthesis from direct CO2 hydrogenation over a Cs-promoted Cu-Fe-Zn catalyst [J]. ACS Catalysis, 2020, 10(9): 5250-5260.
WANG Z J, WEI Y Z, QI J, et al. Mass transfer modulation by hollow multi‐shelled structures for high space‐time yield synthesis of light olefins from syngas [J]. Advanced Functional Materials, 2024, 34(27): 2316547.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构