浏览全部资源
扫码关注微信
1.中国石油大学(华东) 储运与建筑工程学院 山东省油气储运安全重点实验室,山东 青岛 266580
2.中国石油工程建设有限公司西南分公司,四川 成都 610041
3.西安长庆石油科技有限责任公司,陕西 西安 710018
贾红蕊(2000—),硕士研究生,研究方向为氢气站场泄漏后果演化及风险评价,E-mail:S22060070@s.upc.edu.cn。
王武昌(1979—),博士,教授,研究方向为天然气储运、水合物及液化天然气,E-mail:wangwuchangupc@126.com。
纸质出版日期:2024-09-25,
收稿日期:2024-04-17,
修回日期:2024-05-08,
移动端阅览
贾红蕊,陈俊文,王春辉等.基于FLACS的氢气站场泄漏扩散模拟研究[J].低碳化学与化工,2024,49(09):133-140.
JIA Hongrui,CHEN Junwen,WANG Chunhui,et al.Study on leakage and dispersion simulation of hydrogen station based on FLACS[J].Low-carbon Chemistry and Chemical Engineering,2024,49(09):133-140.
贾红蕊,陈俊文,王春辉等.基于FLACS的氢气站场泄漏扩散模拟研究[J].低碳化学与化工,2024,49(09):133-140. DOI: 10.12434/j.issn.2097-2547.20240163.
JIA Hongrui,CHEN Junwen,WANG Chunhui,et al.Study on leakage and dispersion simulation of hydrogen station based on FLACS[J].Low-carbon Chemistry and Chemical Engineering,2024,49(09):133-140. DOI: 10.12434/j.issn.2097-2547.20240163.
氢能作为一种清洁能源将被大规模开发利用,氢气长输管道和沿线站场建设也随之增加。为研究不同条件下氢气泄漏扩散规律,建立了氢气站场FLACS三维模型。在障碍物存在下,对不同泄漏压力、泄漏孔径和泄漏温度下氢气的泄漏扩散进行了模拟,对比了可燃气云的扩散范围,分析了不同因素的影响规律。结果表明,障碍物使氢气泄漏方向发生改变,可燃气云的扩散范围快速增大,工况7中,7 s内(8~15 s)可燃气云面积快速增加至整个站场面积的73.3%。泄漏压力和泄漏孔径增加均可使可燃气云的扩散范围增加:对于4 MPa低压泄漏,泄漏孔径变化影响更加显著;对于100 mm大孔泄漏,泄漏压力变化影响更加显著。泄漏温度从293 K增加到353 K,氢气分子热运动加快,但泄漏温度变化对气云扩散范围的影响并不明显。本研究可为氢气站场泄漏事故的防治提供参考。
As hydrogen energy
a clean energy source
is to be developed and utilized on a large scale
the construction of long-distance hydrogen pipelines and related stations along the route is also increasing. To study the dispersion patterns of hydrogen leakage under different conditions
a three-dimensional FLACS model of the hydrogen station was established. Simulations of hydrogen leakage and dispersion were conducted under different leakage pressures
leakage apertures
and leakage temperatures in the presence of obstacles. The dispersion ranges of flammable gas clouds were compared
and the influencing factors were analyzed. The results show that obstacles cause changes in the direction of hydrogen leakage
leading to a rapid increase in the dispersion range. In scenario 7
within 7 s (8 s to 15 s)
the area of the flammable gas cloud rapidly increases to 73.3% of the entire station area. The increase of leakage pressure and leakage aperture both result in a larger dispersion range of the flammable gas cloud. For low-pressure leakage at 4 MPa
the change in leakage aperture has a more significant impact
while for large aperture leakage at 100 mm
the change in leakage pressure has a more significant impact. When the leakage temperature increases from 293 K to 353 K
the thermal motion of hydrogen molecules accelerates
but the change in leakage temperature does not significantly affect the dispersion range of the gas cloud. This study can provide a reference for the prevention and control of leakage accidents in hydrogen station.
氢气站场泄漏扩散模拟障碍物可燃气云扩散范围
hydrogen stationleakage dispersionsimulationobstaclesflammable gas clouddispersion range
贺小康. 贵阳输气站风险评价和应急管理研究[D]. 成都: 西南石油大学, 2015.
HE X K. Research on risk assessment and emergency management of Guiyang gas transmission station [D]. Chengdu: Southwest University of Petroleum, 2015.
李雪洁, 刘翠伟, 李玉星. 输气站场自用气系统优化设计[J]. 油气储运, 2015, 34(3): 271-274.
LI X J, LIU C W, LI Y X. Optimized design of self-consumption gas system in gas compressor station [J]. Oil & Gas Storage and Transportation, 2015, 34(3): 271-274.
杜娟, 吴琦, 杜强. 天然气门站工艺区泄漏扩散模拟分析[J]. 当代化工, 2014, 43(2): 286-289.
DU J, WU Q, DU Q. Simulation and analysis on gate station process area gas leak diffusion [J]. Contemporary Chemical Industry, 2014, 43(2): 286-289.
莫皓, 贾佳, 杨丹, 等. 加氢站安全风险及评估方法综述[J]. 油气与新能源, 2022, 34(6): 36-42.
MO H, JIA J, YANG D, et al. Review on the safety risk and evaluation methods of hydrogen refueling stations [J]. Oil & Gas and New Energy, 2022, 34(6): 36-42.
付明福, 黄翼鹏, 张明星, 等. 隧道内天然气埋地管道泄漏扩散特征数值模拟[J]. 安全与环境学报, 2024, 24(3): 1105-1113.
FU M F, HUANG Y P, ZHANG M X, et al. Numerical simulation of natural gas leakage dispersion characteristics of the buried pipelines in a tunnel [J]. Journal of Safety and Environment, 2024, 24(3): 1105-1113.
穆海旭. 基于CFD的隧道内高压埋地天然气管道泄漏情景分析[J]. 科技和产业, 2023, 23(8): 150-156.
MU H X. Leakage scenario analysis of high pressure buried natural gas pipeline in tunnel based on CFD [J]. Science and Industry, 2023, 23(8): 150-156.
岑康, 徐浩然, 刘国庆, 等. 开放式厨房燃气泄漏爆炸定量风险评价[J]. 安全与环境学报, 2022, 22(6): 2933-2943.
CEN K, XU H R, LIU G Q, et al. Quantitative risk assessment of gas leakage and explosion in open kitchens [J]. Journal of Safety and Environment, 2022, 22(6): 2933-2943.
邵雪华. 天然气泄漏扩散数值模拟分析[J]. 城市燃气, 2023, (3): 23-27.
SHAO X H. Numerical simulation analysis of natural gas leakage diffusion [J]. Urban Gas, 2023, (3): 23-27.
杨灿剑, 付晋. 加氢站氢气泄漏事故模拟及后果分析[J]. 消防科学与技术, 2011, 30(4): 358-362.
YANG C J, FU J. The accident simulation and consequence analysis of the hydrogen refueling station leakage [J]. Fire Science and Technology, 2011, 30(4): 358-362.
SCHLEDER A M, PASTOR E, PLANAS E, et al. Experimental data and CFD performance for cloud dispersion analysis: The USP-UPC project [J]. Journal of Loss Prevention in the Process Industries, 2015, 38: 125-138.
VYAZMINA E, JALLAIS S. Validation and recommendations for FLACS CFD and engineering approaches to model hydrogen vented explosions: Effects of concentration, obstruction vent area and ignition position [J]. International Journal of Hydrogen Energy, 2016, 41(33): 15101-15109.
王有智, 吴明, 杜金, 等. 基于FLACS的食堂天然气泄漏爆炸事故后果模拟[J]. 辽宁石油化工大学学报, 2022, 42(1): 35-40.
WANG Y Z, WU M, DU J, et al. Simulation of the consequence of gas leakage and explosion accident in canteen based on FLACS [J]. Journal of Liaoning Petrochemical University, 2022, 42(1): 35-40.
马楠, 刘峰. CNG加气站泄漏扩散模拟分析[J]. 辽宁石油化工大学学报, 2018, 38(4): 56-62.
MA N, LIU F. Simulation analysis of leakage and diffusion of CNG filling station [J]. Journal of Liaoning Petrochemical University, 2018, 38(4): 56-62.
周宁, 霍靖, 李雪, 等. 基于FLACS软件的LNG加气站储罐泄漏扩散模型验证及模拟[J]. 电子测量技术, 2022, 45(3): 92-97.
ZHOU N, HUO J, LI X, et al. Numerical simulation and analysis of leakage and diffusion of tanks in LNG refueling station based on FLACS software [J]. Electronic Measurement Technology, 2022, 45(3): 92-97.
宋滋润, 李晋, 闫世旭, 等. 基于FLACS模拟研究压缩天然气加气站泄漏事故后果[J]. 石化技术, 2022, 29(10): 22-24.
SONG Z R, LI J, YAN S X, et al. Research on leakage of CNG filling station based on FLACS [J]. Petrochemical Technology, 2022, 29(10): 22-24.
尹恒, 邹庆, 廖柯熹, 等. 天然气管道站场泄漏扩散三维动态研究[J]. 西南石油大学学报(自然科学版), 2022, 44(2): 135-147.
YIN H, ZOU Q, LIAO K X, et al. Three-dimensional dynamic study on leakage and diffusion of natural gas pipeline station [J]. Journal of Southwest Petroleum University (Natural Science Edition), 2022, 44(2): 135-147.
陈强峰, 王西明, 汤敏华, 等. 基于FLACS的掺氢燃气站场事故后果评估[J]. 消防科学与技术, 2022, 41(7): 937-941.
CHEN Q F, WANG X M, TANG M H, et al. Accident consequence assessment of hydrogen-doped gas station based on FLACS [J]. Fire Science and Technology, 2022, 41(7): 937-941.
高标, 赵若彤, 郐楚婷, 等. 高压掺氢天然气管道泄漏扩散与失效后果的数值模拟研究[J]. 辽宁石油化工大学学报, 2023, 43(2): 60-66.
GAO B, ZHAO R T, KUAI C T, et al. Numerical simulation of leak diffusion and failure consequences of high-pressure hydrogen-doped natural gas pipelines [J]. Journal of Liaoning Petrochemical University, 2023, 43(2): 60-66.
崔兆雪, 田磊, 段鹏飞, 等. 掺氢天然气管道输送工艺特性[J]. 石油化工高等学校学报, 2021, 34(6): 81-88.
CUI Z X, TIAN L, DUAN P F, et al. Process characteristics of hydrogen blend natural gas pipeline transportation [J]. Journal of Petrochemical Universities, 2021, 34(6): 81-88.
GEXCON AS. Flacs v21.2 user’s manual [EB]. 2021.
俞进, 张皓, 贾文龙, 等. 混氢天然气输气站场泄漏扩散数值模拟[J]. 西南石油大学学报(自然科学版), 2022, 44(6): 153-161.
YU J, ZHANG H, JIA W L, et al. Numerical simulation of leakage and diffusion in hydrogen mixed natural gas transmission station [J]. Journal of Southwest Petroleum University (Natural Science Edition), 2022, 44(6): 153-161.
刘自亮, 熊思江, 花争立, 等. 埋地输氢管道泄漏爆炸事故后果模拟分析[J]. 中国安全生产科学技术, 2019, 15(12): 94-100.
LIU Z L, XIONG S J, HUA Z L, et al. Simulation analysis on leakage and explosion accident consequence of buried hydrogen pipeline [J]. China Safety Production Science and Technology, 2019, 15(12): 94-100.
彭善碧, 罗雪, 杨林. 掺氢天然气长输管道泄漏扩散规律数值模拟[J]. 石油与天然气化工, 2023, 52(6): 44-52+59.
PENG S B, LU X, YANG L. Numerical simulation of leakage and diffusion rules of hydrogen blended natural gas long-distance pipelines [J]. Petroleum and Natural Gas Chemical, 2023, 52(6): 44-52+59.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构