浏览全部资源
扫码关注微信
1.宁夏大学 化学与化工学院,省部共建煤炭高效利用与绿色化工国家重点实验室,宁夏 银川 750021
2.宁夏大学 材料与新能源学院,宁夏 银川 750021
3.宁夏计量质量检验检测研究院 国家煤化工产业计量测试中心,宁夏 银川 750411
张庆旭(2000—),硕士研究生,研究方向为CO加氢定向转化,E-mail:1208212575@qq.com。
王康洲(1992—),博士,副教授,研究方向为低碳资源催化转化,E-mail:kangzhou_wang@163.com;
张建利(1980—),博士,研究员,研究方向为碳一化学,E-mail:zhangjl@nxu.edu.cn。
纸质出版日期:2024-08-25,
收稿日期:2024-04-16,
修回日期:2024-05-22,
移动端阅览
张庆旭,王康洲,李财虎等.表面改性Fe/CS调控CO加氢产物分布研究[J].低碳化学与化工,2024,49(08):18-27.
ZHANG Qingxu,WANG Kangzhou,LI Caihu,et al.Study on distribution of CO hydrogenation products regulated by surface-modified Fe/CS[J].Low-carbon Chemistry and Chemical Engineering,2024,49(08):18-27.
张庆旭,王康洲,李财虎等.表面改性Fe/CS调控CO加氢产物分布研究[J].低碳化学与化工,2024,49(08):18-27. DOI: 10.12434/j.issn.2097-2547.20240160.
ZHANG Qingxu,WANG Kangzhou,LI Caihu,et al.Study on distribution of CO hydrogenation products regulated by surface-modified Fe/CS[J].Low-carbon Chemistry and Chemical Engineering,2024,49(08):18-27. DOI: 10.12434/j.issn.2097-2547.20240160.
CO加氢经费托合成制取高附加值化学品是实现煤炭清洁高效利用的重要途径之一,研发高效催化剂是实现产物分布定向调控、提高目标产物选择性并抑制C1副产物生成的关键。催化剂表面性质对CO的吸附活化、加氢活性和产物分布具有重要影响。以无水葡萄糖为碳源、乙二醇为溶剂,采用溶剂热法制得碳载体,经H
2
O
2
、NH
3
•H
2
O表面改性和掺氮处理后,采用浸渍法分别制备了5Fe/CS-H
2
O
2
、5Fe/CS-NH
3
•H
2
O和5Fe/CS-N催化剂,探究了表面改性对费托合成产物分布的影响。采用XRD、SEM、TEM、N
2
吸/脱附、TG-DTG、FT-IR、Zeta电位、XPS和拉曼光谱等对样品进行了表征。结果表明,不同表面改性方式对催化剂表面物化性质和催化性能影响显著。H
2
O
2
改性增加了催化剂表面—OH的数量,增强了表面亲水性,促进了Fe在载体上的分散,催化剂的热稳定性提高。在300 ℃、1.5 MPa、空速为1000 h
-1
和
n
(H
2
):
n
(CO) = 2的条件下进行CO加氢反应活性测试结果表明,改性后的催化剂显著抑制了CH
4
的生成,提高了低碳烯烃选择性,从5Fe/CS的24.39%分别提高到5Fe/CS-NH
3
•H
2
O的34.94%、5Fe/CS-N的37.63%以及5Fe/CS-H
2
O
2
的43.57%。通过表面改性和掺氮处理调控催化剂表面性质实现了对产物分布的优化。
The preparation of high value-added chemicals via CO hydrogenation with Fischer-Tropsch synthesis is one of the important ways to achieve clean and efficient utilization of coal. The development of efficient catalysts is the key to achieve targeted regulation of product distributions
improve the selectivity of target products and inhibit the formation of C1 by-products. The surface properties of catalysts have a significant impact on the adsorption and activation of CO
hydrogenation activation and product distributions. Anhydrous glucose was used as the carbon source and
ethylene glycol was used as the solvent to prepare the carbon support by solvothermal method. After H
2
O
2
and NH
3
•H
2
O surface modification and nitrogen doping
5Fe/CS-H
2
O
2
5Fe/CS-NH
3
•H
2
O and 5Fe/CS-N catalysts were prepared by impregnation method
respectively. The effect of surface modification on the product distributions of Fischer-Tropsch synthesis was investigated. The samples were characterized by XRD
SEM
TEM
N
2
adsorption/desorption
TG-DTG
FT-IR
Zeta potential
XPS and Raman. The results show that different surface modification methods have a significant impact on the surface physicochemical properties and catalytic performances of catalysts. The modification of H
2
O
2
increases the amount of —OH on catalyst surface
enhances the hydrophilicity of catalyst surface
promotes the dispersion of Fe on the support
and improves the thermal stability of catalysts. The activity test of CO hydrogenation reaction was conducted under the conditions of 300 ℃
1.5 MPa
space velocity 1000 h
-1
and
n
(H
2
):
n
(CO) = 2. The results show that the modified catalysts significantly inhibit the generation of CH
4
and improve the selectivity of light olefins. The olefin selectivities of 5Fe/CS-NH
3
•H
2
O
5Fe/CS-N and 5Fe/CS-H
2
O
2
increase from 24.39% to 34.94%
37.63% and 43.57%
respectively. The surface properties of the catalyst are adjusted by surface modification and nitrogen-doping treatment
and the product distribution is optimized.
CO加氢Fe/CS催化剂表面改性低碳烯烃
CO hydrogenationFe/CS catalystssurface modificationlight olefins
KHODAKOV A Y, CHU W, FONGARLAND P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels [J]. Chemical Reviews, 2007, 107(5): 1692-1744.
ZHOU W, CHENG K, KANG J C, et al. New horizon in C1 chemistry: Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels [J]. Chemical Society Reviews, 2019, 48(12): 3193-3228.
JIAO F, LI J J, PAN X L, et al. Selective conversion of syngas to light olefins [J]. Science, 2016, 351(6277): 1065-1068.
JIAO F, PAN X L, GONG K, et al. Shape‐selective zeolites promote ethylene formation from syngas via a ketene intermediate [J]. Angewandte Chemie International Edition, 2018, 57(17): 4692-4696.
李自琴, 王康洲, 高新华, 等. CO2加氢制高碳α-烯烃Fe基催化剂研究进展[J]. 低碳化学与化工, 2023,48(3): 11-21.
LI Z Q, WANG K Z, GAO X H, et al. Research progress on Fe-based catalysts for CO2 hydrogenation to high carbon α-olefins [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(3): 11-21.
WANG D, ZHOU X P, JI J, et al. Modified carbon nanotubes by KMnO4 supported iron Fischer-Tropsch catalyst for the direct conversion of syngas to lower olefins [J]. Journal of Materials Chemistry A, 2015, 3(8): 4560-4567.
TORRES-GALVIS H M, KOEKEN A C J, BITTER J H, et al. Effects of sodium and sulfur on catalytic performance of supported iron catalysts for the Fischer-Tropsch synthesis of lower olefins [J]. Journal of Catalysis, 2013, 303: 22-30.
ABBAS M, ZHANG J, LIN K, et al. Fe3O4 nanocubes assembled on RGO nanosheets: Ultrasound induced in-situ and eco-friendly synthesis, characterization and their excellent catalytic performance for the production of liquid fuel in Fischer-Tropsch synthesis [J]. Ultrasonics Sonochemistry, 2018, 42: 271-282.
TORRES-GALVIS H M, BITTER J H, KHARE C B, et al. Supported iron nanoparticles as catalysts for sustainable production of lower olefins [J]. Science, 2012, 335(6070): 835-838.
WANG H, WANG L, XIAO F S. New routes for the construction of strong metal-support interactions [J]. Science China Chemistry, 2022, 65(11): 2051-2057.
WANG C F, PAN X L, BAO X H. Direct production of light olefins from syngas over a carbon nanotube confined iron catalyst [J]. Chinese Science Bulletin, 2010, 55: 1117-1119.
TIAN Z P, WANG C G, SI Z, et al. Fischer-Tropsch synthesis to light olefins over iron-based catalysts supported on KMnO4 modified activated carbon by a facile method [J]. Applied catalysis A: General, 2017, 541: 50-59.
YU L, LI W X, PAN X L, et al. In- and out-dependent interactions of iron with carbon nanotubes [J]. The Journal of Physical Chemistry C, 2012, 116(31): 16461-16466.
YU G B, SUN B, PEI Y, et al. FexOy@C spheres as an excellent catalyst for Fischer-Tropsch synthesis [J]. Journal of the American Chemical Society, 2010, 132(3): 935-937.
LIU G G, CHEN Q J, OYUNKHAND E, et al. Nitrogen-rich mesoporous carbon supported iron catalyst with superior activity for Fischer-Tropsch synthesis [J]. Carbon, 2018, 130: 304-314.
ADAMS J S, CHEMBURKAR A, PRIYADARSHINI P, et al. Solvent molecules form surface redox mediators in situ and cocatalyze O2 reduction on Pd [J]. Science, 2021, 371(6529): 626-632.
CHEN X Q, DENG D H, PAN X L, et al. N-doped graphene as an electron donor of iron catalysts for CO hydrogenation to light olefins [J]. Chemical Communications, 2015, 51(1): 217-220.
WANG Y R, SHAO Y W, ZHANG L J, et al. Co-presence of hydrophilic and hydrophobic sites in Ni/biochar catalyst for enhancing the hydrogenation activity [J]. Fuel, 2021, 293: 120426.
ZHANG Y X, GUO X Y, LIU B, et al. Cellulose modified iron catalysts for enhanced light olefins and linear C5+ α-olefins from CO hydrogenation [J]. Fuel, 2021, 294: 120504.
ZHANG Y X, GUO X Y, LIU B, et al. Surface modification of g-C3N4-supported iron catalysts for CO hydrogenation: Strategy for product distribution [J]. Fuel, 2021, 305: 121473.
LIU B, LIANG J, GAO X Y, et al. Highly selective formation of linear α-olefins over layered and hydrophilic Fe3O4/MAG catalysts in CO hydrogenation [J]. Fuel, 2022, 326: 125054.
GUO X Y, LIU B, GAO X H, et al. Improved olefin selectivity during CO hydrogenation on hydrophilic Fe/HAP catalysts [J]. Catalysis Today, 2023, 410: 193-204.
MENG W X, DE-JONG B C A, VAN-DE-BOVENKAMP H, et al. Selectivity control between reverse water-gas shift and Fischer-Tropsch synthesis in carbon-supported iron-based catalysts for CO2 hydrogenation [J]. Chemical Engineering Journal, 2024, 489: 151166.
WU K, ZHANG Z, SHAN R, et al. Encapsulating Fischer-Tropsch synthesis catalyst with porous graphite-carbon enables ultrahigh activity for syngas to α-olefins [J]. Applied Catalysis B: Environment and Energy, 2024, 353: 124067.
LI X C, LIU Y H, ZHAO D G, et al. Boosting Fischer-Tropsch synthesis via tuning of N dopants in TiO2@CN-supported Ru catalysts [J]. Transactions of Tianjin University, 2024, 30: 90-102.
IVANTSOV M I, KRYSANOVA K O, GRABCHAK A A, et al. Influence of the phase composition of the Fe/biochar catalysts on the composition of Fischer-Tropsch synthesis products: The lapidus theory of bifunctional catalytic centers [J]. Solid Fuel Chemistry, 2023, 57(6): 367-372.
DLAMINI M W, KUMI D O, PHAAHLAMOHLAKA T N, et al. Carbon spheres prepared by hydrothermal synthesis—A support for bimetallic iron cobalt Fischer-Tropsch catalysts [J]. ChemCatChem, 2015, 7(18): 3000-3011.
XIONG H F, MOYO M, MOTCHELAHO M A, et al. Fischer-Tropsch synthesis: Iron catalysts supported on N-doped carbon spheres prepared by chemical vapor deposition and hydrothermal approaches [J]. Journal of Catalysis, 2014, 311: 80-87.
MUSTAPHA S, NDAMITSO M M, ABDULKAREEM A S, et al. Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles [J]. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2019, 10(4): 045013.
SUN J, GUO L S, MA Q X, et al. Functionalized natural carbon-supported nanoparticles as excellent catalysts for hydrocarbon production [J]. Chemistry—An Asian Journal, 2017, 12(3): 366-371.
GU B, HE S, ZHOU W, et al. Polyaniline-supported iron catalyst for selective synthesis of lower olefins from syngas [J]. Journal of Energy Chemistry, 2017, 26(4): 608-615.
LIU Y, CHEN J F, ZHANG Y. The effect of pore size or iron particle size on the formation of light olefins in Fischer-Tropsch synthesis [J]. RSC Advances, 2015, 5(37): 29002-29007.
RYTTER E, BORG Ø, TSAKOUMIS N E, et al. Water as key to activity and selectivity in Co Fischer-Tropsch synthesis: γ-alumina based structure-performance relationships [J]. Journal of Catalysis, 2018, 365: 334-343.
BIDDINGER E J, DEAK D, OZKAN U S. Nitrogen-containing carbon nanostructures as oxygen-reduction catalysts [J]. Topics in Catalysis, 2009, 52: 1566-1574.
ZHANG Y F, WANG Q S, GAO S N, et al. Intercalation and in situ formation of coordination compounds with ligand 8-hydroxyquinoline-5-sulfonic acid in the interlayer space of layered silicate magadiite by solid-solid reactions [J]. Microporous and Mesoporous Materials, 2018, 266: 14-23.
LU Y W, YAN Q G, HAN J, et al. Fischer-Tropsch synthesis of olefin-rich liquid hydrocarbons from biomass-derived syngas over carbon-encapsulated iron carbide/iron nanoparticles catalyst [J]. Fuel, 2017, 193: 369-384.
TU J L, DING M Y, ZHANG Q, et al. Design of carbon‐encapsulated Fe3O4 nanocatalyst with enhanced performance for Fischer-Tropsch synthesis [J]. ChemCatChem, 2015, 7(15): 2323-2327.
ZHANG J, WANG Y, QI D, et al. Preparation of Fe3O4-hydroxyethyl cellulose-polyethyleneimine and its adsorption for Pb(II) ion [J]. Journal of Functional Materials, 2015, 13: 13018-13023
BINIAK S, SZYMAŃSKI G, SIEDLEWSKI J, et al. The characterization of activated carbons with oxygen and nitrogen surface groups [J]. Carbon, 1997, 35(12): 1799-1810.
GOGOI A, NAVGIRE M, SARMA K C, et al. Fe3O4-CeO2 metal oxide nanocomposite as a Fenton-like heterogeneous catalyst for degradation of catechol [J]. Chemical Engineering Journal, 2017, 311: 153-162.
ZHU B C, XIA P F, HO W K, et al. Isoelectric point and adsorption activity of porous g-C3N4 [J]. Applied Surface Science, 2015, 344: 188-195.
LI Z Z, MENG X C, ZHANG Z S, Fabrication of surface hydroxyl modified g-C3N4 with enhanced photocatalytic oxidation activity [J]. Catalysis Science & Technology, 2019, 9(15): 3979-3993.
RYTTER E, RUNNINGEN A, BLEKKAN E, et al. The water assisted vinylene mechanism for cobalt Fischer-Tropsch synthesis assessed by multi-catalyst modelling of kinetics and deactivation [J]. Molecular Catalysis, 2022, 530: 112489.
LIU B, GENG S S, ZHENG J, et al. Unravelling the new roles of Na and Mn promoter in CO2 hydrogenation over Fe3O4-based catalysts for enhanced selectivity to light α-olefins [J]. ChemCatChem, 2018, 10(20): 4718-4732.
XU H, YE Q, WANG Q G, et al. Enhancement of organic contaminants degradation at low dosages of Fe(III) and H2O2 in g-C3N4 promoted Fe(III)/H2O2 system under visible light irradiation [J]. Separation and Purification Technology, 2020, 251: 117333.
XIA W, JIN C, KUNDU S, et al. A highly efficient gas-phase route for the oxygen functionalization of carbon nanotubes based on nitric acid vapor [J]. Carbon, 2009, 47(3): 919-922.
李烁, 姚楠. 掺氮碳基材料在费托合成反应中的应用[J]. 化工进展, 2015, 34(11): 3933-3937.
LI S, YAO N. Application of nitrogen-doped carbon materials in Fischer-Tropsch synthesis reaction [J]. Chemical Industry and Engineering Progress [J]. 2015, 34(11): 3933-3937.
TU J L, DING M Y, WANG T J, et al. Direct conversion of bio-syngas to gasoline fuels over a Fe3O4@C Fischer-Tropsch synthesis catalyst [J]. Energy Procedia, 2017, 105: 82-87.
HERNANDEZ Y, NICOLOSI V, LOTYA M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite [J]. Nature Nanotechnology, 2008, 3(9): 563-568.
DRESSELHAUS M S, JORIO A, HOFMANN M, et al. Perspectives on carbon nanotubes and graphene Raman spectroscopy [J]. Nano Letters, 2010, 10(3): 751-758.
CANÇADO L G, JORIO A, FERREIRA E H M, et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies [J]. Nano Letters, 2011, 11(8): 3190-3196.
ZHANG Y Q, TAO L, XIE C, et al. Defect engineering on electrode materials for rechargeable batteries [J]. Advanced Materials, 2020, 32(7): 1905923.
GUNASOORIYA G T K K, VAN-BAVEL A P, KUIPERS H P C E, et al. Key role of surface hydroxyl groups in C—O activation during Fischer-Tropsch synthesis [J]. ACS Catalysis, 2016, 6(6): 3660-3664.
LIU S L, LI Y W, WANG J G, et al. Mechanisms of H-and OH-assisted CO activation as well as C—C coupling on the flat Co(0001) surface—Revisited [J]. Catalysis Science & Technology, 2016, 6(23): 8336-8343.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构