浏览全部资源
扫码关注微信
1.中石油华东设计院有限公司,山东 青岛 266071
2.中国石油天然气第七建设有限公司, 山东 青岛 266061
陈晨(1991—),博士,工程师,研究方向为化工与新能源工艺开发,E-mail:chenchenupc@126.com。
纸质出版日期:2024-10-25,
收稿日期:2024-04-08,
修回日期:2024-05-25,
移动端阅览
陈晨,许春国.Ag/Ag2CO3宽电势催化剂电催化还原CO2制CO性能研究[J].低碳化学与化工,2024,49(10):30-37.
CHEN Chen,XU Chunguo.Study on electrocatalytic performances of Ag/Ag2CO3 wide potential catalysts for CO2 reduction to CO[J].Low-carbon Chemistry and Chemical Engineering,2024,49(10):30-37.
陈晨,许春国.Ag/Ag2CO3宽电势催化剂电催化还原CO2制CO性能研究[J].低碳化学与化工,2024,49(10):30-37. DOI: 10.12434/j.issn.2097-2547.20240148.
CHEN Chen,XU Chunguo.Study on electrocatalytic performances of Ag/Ag2CO3 wide potential catalysts for CO2 reduction to CO[J].Low-carbon Chemistry and Chemical Engineering,2024,49(10):30-37. DOI: 10.12434/j.issn.2097-2547.20240148.
电催化二氧化碳还原反应(CO
2
RR)催化剂面临稳定性差和选择性低等挑战,开发高性能、宽电势CO
2
RR催化剂成为研究热点。采用原位制备法,在伏安线性扫描过程中,反应诱导银箔基底与KHCO
3
电解液原位生成催化剂I-Ag/Ag
2
CO
3
。采用XRD、XPS、Raman、SEM和TEM等对I-Ag/Ag
2
CO
3
进行了表征,并考察了其在H型电解池中电催化性能。结果表明,I-Ag/Ag
2
CO
3
在宽电势(-0.78~-1.78 V)范围内表现出高效的CO
2
还原制CO催化性能,该催化剂的CO部分电流密度最高可达53 mA/cm
2
。该催化剂在1 V的宽电势区间内CO法拉第效率(
FE
CO
)高于80%,在-1.18 V(参比电极为可逆氢电极,下同)电势下
FE
CO
最大值为96%,并能够在-1.0 V、20 h内不低于90%。通过构-效关系分析可知,通过原位制备法获得的I-Ag/Ag
2
CO
3
上Ag和Ag
2
CO
3
之间形成了特殊异质结构,减小了电子转移至CO
2
的阻力,提高了CO
2
RR过程速控步骤的反应速率。
Electrocatalytic carbon dioxide reduction reaction (CO
2
RR) faces challenges of poor stability and low selectivity
and the development of high-performance CO
2
RR catalysts with a wide potential range has become a research hotspot. An in situ preparation method was adopted
where CO
2
RR catalyst I-Ag/Ag
2
CO
3
was formed in situ on a silver foil substrate during linear sweep voltammetry in a KHCO
3
electrolyte. I-Ag/Ag
2
CO
3
was characterized by XRD
XPS
Raman
SEM and TEM. The electrocatalytic performance of I-Ag/Ag
2
CO
3
was investigated in an H-type electrolytic cell. The results show that I-Ag/Ag
2
CO
3
exhibits efficient catalytic performance for CO
2
reduction to CO in a wide potential range (from -0.
78 V to -1.78 V). The maximum CO partial current density of the catalyst is up to 53 mA/cm
2
and the CO Faradaic efficiency (
FE
CO
) of the catalyst is higher than 80% in a wide potential range of 1 V
and the maximum
FE
CO
is 96% at -1.18 V (the reference electrode is a reversible hydrogen electrode
the same below) and can maintain no less than 90% within 20 h at -1.0 V. Through structure-performance relationship analysis
it is revealed that the special heterostructure formed between Ag and Ag
2
CO
3
on I-Ag/Ag
2
CO
3
obtained via the in situ preparation method. The special heterostructure reduces the resistance of electron transfer to CO
2
and enhances the rate of the rate-determining step of CO
2
RR process.
Ag/Ag2CO3电催化还原CO2CO宽电势催化剂
Ag/Ag2CO3electroreductionCO2COwide potential catalysts
DUAN X C, XU J T, WEI Z X, et al. Metal-free carbon materials for CO2 electrochemical reduction [J]. Advanced Materials, 2017, 29(41): 1701784.
LIU G C, HU Z F, LISAK G. CO2 capture and utilization through isothermal carbonation-calcination looping integrated with MSW pyrolysis volatile reforming [J]. Chemical Engineering Journal, 2024, 482: 149164.
钱慧琳, 冉金玲, 何安帮, 等. 二氧化碳-甲烷干气重整反应及其积炭控制的热力学分析[J]. 低碳化学与化工, 2023, 48(5): 55-61.
QIAN H L, RAN J L, HE A B, et al. Thermodynamic analysis of carbon dioxide-methane dry reforming and its carbon deposition control [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(5): 55-61.
WANG Z H, ZOU G J, PARK J H, et al. Progress in design and preparation of multi-atom catalysts for photocatalytic CO2 reduction [J]. Science China Materials, 2024, 67(2): 397-423.
ZHI Y Q, MAO H N, YANG G X, et al. The photo-decomposition and self-restructuring dynamic equilibrium mechanism of Cu2(OH)2CO3 for stable photocatalytic CO2 reduction [J]. Journal of Energy Chemistry, 2024, 92: 104-112.
方鑫, 汪家铭, 李娟, 等. 基于生物质气化的电-热-氢三联供协同CO2捕集系统研究[J]. 能源化工, 2023, 44(5): 1-9.
FANG X, WANG J M, LI J, et al. Study on the performance of electricity-heat-hydrogen integrated energy system with CO2 capture based on biomass gasification [J]. Energy Chemical Industry, 2023, 44(5): 1-9.
MULLER F J, FUCHS J, CUESTA M F, et al. CO2 conversion to CO by fluidized bed biomass gasification: Analysis of operational parameters [J]. Journal of CO2 Utilization, 2024, 81: 102706.
CUI C H, LIU H, WANG J J, et al. Unveiling mechanisms in Cu2O-catalyzed electroreduction of CO2 through theoretical resolution using periodic boundary and saturation cluster models [J]. Applied Surface Science, 2024, 657: 159828.
JIANG X X, ZHAO Y X, KONG Y, SUN J J, et al. Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate [J]. Chinese Chemical Letters, 2024, 109555.
ZHU C, WU G F, MAO J N, et al. Halide-modulated Hollow-Fiber Cu penetration electrode boosts Ampere-Level CO2 electroreduction to multi carbon products [J]. Chemical Engineering Journal, 2024, 485: 150040.
LI B K, LIU L, YUE M Z, et al. Status and challenges for CO2 electroreduction to CH4: Advanced catalysts and enhanced strategies [J]. Green Chemistry, 2024, 26: 103-121.
KUHL K P, CAVE E R, ABRAM D N, et al. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces [J]. Energy & Environmental Science, 2012, 5: 7050-7059.
YU L, DENG D H, BAO X H. Chain mail for catalysts [J]. Angewandte Chemie International Edition, 2020, 59(36): 15294-15297.
张爱红, 杨勇, 何安帮, 等.双金属ZIF衍生的ZnxCoy/N-C催化剂及其高效电催化还原CO2制CO的性能研究[J]. 低碳化学与化工, 2023, 48(3): 62-68.
ZHANG A H, YANG Y, HE A B, et al. Study on bimetallic ZIF-derived ZnxCoy/N-C catalyst and its high efficiency electrocatalytic reduction of CO2 to CO [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(3): 62-68.
王浩田, 龚善和, 王文搏, 等. ZIF-8基复合材料高效、稳定电催化还原CO2 [J]. 无机化学学报, 2023, 39(11): 2151-2159.
WANG H T, GONG S H, WANG W B, et al. Efficient and stable electrocatalytic reduction of CO2 by ZIF-8 composites [J]. Chinese Journal of Inorganic Chemistry, 2023, 39(11): 2151-2159.
WANG R M, HASPEL H, PUSTOVARENKO A, et al. Maximizing Ag utilization in high-rate CO2 electrochemical reduction with a coordination polymer-mediated gas diffusion electrode [J]. ACS Energy Letters, 2019, 4(8): 2024-2031.
LIU S, TAO H B, ZENG L, et al. Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates [J]. Journal of American Chemistry Society, 2017, 139(6): 2160-2163.
WANG Q, ZHANG S Y, LIN T S, et al. Highly mechanical and high-temperature properties of Cu-Cu joints using citrate-coated nanosized Ag paste in air [J]. Progress in Natural Science: Materials International, 2021, 31(1): 129-140.
ZHAO Z L, LU G. Computational screening of near-surface alloys for CO2 electroreduction [J]. ACS Catalysis, 2018, 8(5): 3885-3894.
CHOUKROUN D, PACQUETS L, LI C, et al. Mapping composition-selectivity relationships of supported Sub-10 nm Cu-Ag nanocrystals for high-rate CO2 electroreduction [J]. ACS Nano, 2021, 15(9): 14858-14872.
DUTTA A, MORSTEIN C E, RAHAMAN M, et al. Beyond copper in CO2 electrolysis: Effective hydrocarbon production on silver-nanofoam catalysts [J]. ACS Catalysis, 2018, 8(9): 8357-8368.
LI Y F, CHEN C, CAO R, et al. Dual-atom Ag2/graphene catalyst for efficient electroreduction of CO2 to CO [J]. Applied Catalysis B: Environmental. 2020, 268: 118747.
BACK S, YEOM M S, JUNG Y. Active sites of Au and Ag nanoparticle catalysts for CO2 electroreduction to CO [J]. ACS Catalysis, 2015, 5(9): 5089-5096.
G J F, WU Y C. Tunable Ag micromorphologies show high activities for electrochemical H2 evolution and CO2 electrochemical reduction [J]. ACS Sustainable Chemistry & Engineering. 2019, 7(6): 6352-6359.
CHEN Z P, MOU K W, WANG X H, et al. Nitrogen-doped graphene quantum dots enhance the activity of Bi2O3 nanosheets for electrochemical reduction of CO2 in a wide negative potential region [J]. Angewandte Chemie International Edition, 2018, 57(39): 12790-12794.
HUANG Z H, QIU X Y, CHEN D D, et al. Construction of Ag2CO3/ZnFe2O4/bentonite Z-type heterojunction photocatalyst and efficient degradation of norfloxacin [J]. Optical Materials, 2023, 143: 114153.
SANTAMARIA-PEREZ D, PAVIC L, CHULIA-JORDAN R, et al. Phase stability of stress-sensitive Ag2CO3 silver carbonate at high pressures and temperatures [J]. Solid State Sciences, 2023, 135: 107068.
LI Z, LI J X, WANG C X, et al. The loading sequence of Ag and Cu determines the anchoring state of Ag in the AgCu/Al2O3 catalyst and thus the NH3-SCO performance [J]. Applied Surface Science, 2024, 658: 159842.
PERVEEN S, FARHANA, AHMAD T, et al. Synergistic augmentation of dielectric and photocatalytic properties of ZnO via Ag nanoparticle integration [J]. Journal of Molecular Structure, 2024, 1307: 138042.
SENTHIL R A, KHAN A, P J Q, et al. A facile single-pot synthesis of visible-light-driven AgBr/Ag2CO3 composite as efficient photocatalytic material for water purification [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586: 124183.
LIU T J, ZHAO G Y, HOU J S, et al. Ag-CsPbI3 nanocomposite structure in glasses boosts photoluminescence for efficient light emitting diodes [J]. Chemical Engineering Journal, 2024, 486: 150200.
NAIKOO G A, TABOOK M A, TABOOK B A, et al. Electrochemical performance of Co3O4/Ag/CuO electrodes for supercapacitor applications [J]. Journal of Energy Storage, 2024, 85: 111047.
WANG X Q, CHEN Z, ZHAO X Y, et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2 [J]. Angewandte Chemie International Edition, 2018, 57(7): 1944-1948.
LEI F C, LIU W, SUN Y F, et al. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction [J]. Nature Communications, 2016, 7: 12697.
下转第55页)
LI M, HU Y, DONG G, et al. Achieving tunable selectivity and activity of CO2 electroreduction to CO via bimetallic silver-copper electronic engineering [J]. Small, 2023, 19(15): 2207242.
PARK H, CHOI J, KIM H, et al. AgIn dendrite catalysts for electrochemical reduction of CO2 to CO [J]. Applied Catalysis B: Environmental, 2017, 219: 123-131.
REN G S, SU Z H, TANG Y, et al. 4-Mercaptobenzoic acid-anchored ultrafine Ag nanoparticles for efficient CO2 electrochemical reduction [J]. Applied Surface Science, 2023, 608: 155251.
CAI C, LIU B, LIU K, et al. Heteroatoms induce localization of the electric field and promote a wide potential-window selectivity towards CO in the CO2 electroreduction [J]. Angewandte Chemie International Edition, 2022, 44(61): e202212640.
MARYAM A, ERDEM I, AMIRHOSSEIN F, et al. CO2 electrolysis via surface-engineering electrografted pyridines on silver catalysts [J]. ACS Catalysis, 2022, 12(13): 7862-7876.
Chen J M, LIU X Q, XI S B, et al. Functionalized Ag with thiol ligand to promote effective CO2 electroreduction [J]. ACS Nano, 2022, 16(9): 13982-13991.
MAHYOUB S A, QARAAH F A, YAN S L, et al. Rational design of low loading Pd-alloyed Ag nanocorals for high current density CO2-to-CO electroreduction at elevated pressure [J]. Materials Today Energy, 2022, 24: 100923.
YANG J M, DU H S, YU Q, et al. Porous silver microrods by plasma vulcanization activation for enhanced electrocatalytic carbon dioxide reduction [J]. Journal of Colloid and Interface Science, 2022, 606: 793-799.
BUCKLEY A K, CHENG T, HWAN-OH M, et al. Approaching 100% selectivity at low potential on Ag for electrochemical CO2 reduction to CO using a surface additive [J]. ACS catalysis, 2021, 11(15): 9034-9042.
QI K, ZHANG Y, LI J, et al. Enhancing the CO2-to-CO conversion from 2D silver nanoprisms via superstructure assembly [J]. ACS Nano, 2021, 15(4): 7682-7693.
WANG W B, GONG S H, LIU J, et al. Ag-Cu aerogel for electrochemical CO2 conversion to CO [J]. Journal of Colloid and Interface Science, 2021, 595: 159-167.
YAN S L, CHEN C Z, ZHANG F H, et al. High-density Ag nanosheets for selective electrochemical CO2 reduction to CO [J]. Nanotechnology, 2021, 32(16): 165705.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构