浏览全部资源
扫码关注微信
广西大学 化学化工学院 广西电化学能源材料重点实验室,广西 南宁 530004
李野(2002—),本科生,研究方向为光催化分解水产氢,E-mail:2004110428@st.gxu.edu.cn。
苏通明(1988—),博士,副教授,研究方向为光催化表界面工程,E-mail:sutm@gxu.edu.cn。
纸质出版日期:2024-09-25,
收稿日期:2024-04-08,
修回日期:2024-04-28,
移动端阅览
李野,和家佳,朱传伟等.自组装超分子前驱体制备g-C3N4及其光催化分解水产氢的研究[J].低碳化学与化工,2024,49(09):51-61.
LI Ye,HE Jiajia,ZHU Chuanwei,et al.Preparation of g-C3N4 by self-assembled supramolecular precursor and its study of hydrogen production from photocatalytic water splitting[J].Low-carbon Chemistry and Chemical Engineering,2024,49(09):51-61.
李野,和家佳,朱传伟等.自组装超分子前驱体制备g-C3N4及其光催化分解水产氢的研究[J].低碳化学与化工,2024,49(09):51-61. DOI: 10.12434/j.issn.2097-2547.20240145.
LI Ye,HE Jiajia,ZHU Chuanwei,et al.Preparation of g-C3N4 by self-assembled supramolecular precursor and its study of hydrogen production from photocatalytic water splitting[J].Low-carbon Chemistry and Chemical Engineering,2024,49(09):51-61. DOI: 10.12434/j.issn.2097-2547.20240145.
光催化剂的结构调控对提高光催化效率有重要意义。以三聚氰胺为原料制备了g-C
3
N
4
,并以三聚氰胺-三聚氰酸超分子为前驱体,制备了一系列MC
x
-g-C
3
N
4
(
x
为三聚氰胺与三聚氰酸的物质的量比,
x
=1、2、3或4)。采用XRD、FT-IR、SEM、TEM、N
2
吸/脱附和XPS等对g-C
3
N
4
和MC
x
-g-C
3
N
4
进行了表征,发现g-C
3
N
4
和MC
x
-g-C
3
N
4
具有不同的形貌、结构、组成和比表面积。其中,MC3-g-C
3
N
4
为多孔的纳米片结构,
n
(C元素):
n
(N元素)为1.23,比表面积为45.63 m
2
/g,是g-C
3
N
4
比表面积的4.5倍。以Pt为助催化剂,三乙醇胺为牺牲剂,在可见光下(≥ 400 nm)考察了催化剂的光催化分解水产氢性能。结果表明,MC3-g-C
3
N
4
表现出最佳的光催化分解水产氢性能,其产氢速率达到1127.83 μmol/(h·g),是g-C
3
N
4
的35倍。MC3-g-C
3
N
4
较大的比表面积和多孔结构为反应提供了更多的活性位点,且纳米片结构缩短了光生电子迁移到催化剂表面的距离,促进了光生电子和空穴的分离,从而显著提高了其光催化分解水
产氢性能。
The structural regulation of photocatalysts is important to improve the efficiency of photocatalysis. g-C
3
N
4
was prepared from melamine as raw material
and a series of MC
x
-g-C
3
N
4
(
x
is the molar ratio of melamine to cyanuric acid
and
x
= 1
2
3 or 4) catalysts were prepared using melamine-cyanuric acid supramolecular as precursor. XRD
FT-IR
SEM
TEM
N
2
adsorption/desorption
and XPS were used to characterize g-C
3
N
4
and MC
x
-g-C
3
N
4
and it is found that g-C
3
N
4
and MC
x
-g-C
3
N
4
exhibit different morphologies
structures
compositions and specific surface areas. Among them
MC3-g-C
3
N
4
displays porous nanosheet structure with
n
(C element):
n
(N element) of 1.23
and the specific surface area is 45.63 m
2
/g
which is 4.5 times larger than that of g-C
3
N
4
. Using Pt as the co-catalyst and triethanolamine as the sacrificial agent
the catalytic performance of catalysts for hydrogen production from photocatalytic water splitting was investigated under visible light (≥ 400 nm). The results show that MC3-g-C
3
N
4
shows the best catalytic performance for hydrogen production from photocatalytic water splitting
and its hydrogen production rate reaches 1127.83 μmol/(h·g)
which is 35 times higher than that of g-C
3
N
4
. The large surface area and porous structure of MC3-g-C
3
N
4
provide more active sites for the reaction
and the nanosheet structure shorens the migration distance of photogenerated electrons to the catalyst surface
which promotes the separation of photogenerated electrons and holes
and thus significantly improving its catalytic performance for hydrogen production
from photocatalytic water splitting.
光催化可见光产氢超分子前驱体氮化碳
photocatalysisvisible lighthydrogen productionsupramolecular precursorcarbon nitride
SONG Y M, ZHENG X L, YANG Y Q, et al. Heterojunction engineering of multinary metal sulfide-based photocatalysts for efficient photocatalytic hydrogen evolution [J]. Advanced Materials, 2024, 36(11): 2305835.
李苗, 李欣儒, 武威, 等. 非贵金属掺杂改性g-C3N4光催化分解水制氢的研究进展 [J]. 中国陶瓷, 2024, 60(1): 1-8+34.
LI M, LI X R, WU W, et al. Research progress on photocatalytic water splitting hydrogen generation by non-noble droping modified g-C3N4 [J]. China Ceramics, 2024, 60(1): 1-8+34.
MOLAEI M J. Graphitic carbon nitride (g-C3N4) synthesis and heterostructures, principles, mechanisms, and recent advances: A critical review [J]. International Journal of Hydrogen Energy, 2023, 48(84): 32708-32728.
NAGELLA S R, VIJITHA R, RAMESH NAIDU B, et al. Benchmarking recent advances in hydrogen production using g-C3N4-based photocatalysts [J]. Nano Energy, 2023, 111: 108402.
MA D D, ZHANG Z M, ZOU Y J, et al. The progress of g-C3N4 in photocatalytic H2 evolution: From fabrication to modification [J]. Coordination Chemistry Reviews, 2024, 500: 215489.
LUO H, SHAN T S, ZHOU J W, et al. Controlled synthesis of hollow carbon ring incorporated g-C3N4 tubes for boosting photocatalytic H2O2 production [J]. Applied Catalysis B: Environmental, 2023, 337: 122933.
张直峰, 王介楷, 张颖, 等. 超薄氧掺杂g-C3N4纳米片的制备及其光催化性能[J]. 精细化工, 2023, 40(9): 1925-1933.
ZHANG Z F, WANG J K, ZHANG Y, et al. Preparation and photocatalytic performance of ultrathin oxygen-doped g-C3N4 nanosheets [J]. Fine Chemicals, 2023, 40(9): 1925-1933.
刘月琴, 王海涛, 郭建峰, 等. 不同形貌g-C3N4光催化剂的制备及性能 [J]. 材料导报, 2024, 38(4): 55-61.
LIU Y Q, WANG H T, GUO J F, et al. Preparation and performance of g-C3N4 photocatalysts with different morphology [J]. Materials Reports, 2024, 38(4): 55-61.
马香港, 丁远, 张俊格, 等. 改性g-C3N4光催化降解双酚A的研究进展 [J]. 化工进展: 1-26[2024-04-08]. DOI: 10.16085/j.issn.1000-6613.2023-1914http://dx.doi.org/10.16085/j.issn.1000-6613.2023-1914.
MA X G, DING Y, ZHANG J G, et al. Progress of photocatalytic degradation of bisphenol a by modified g-C3N4 [J].Chemical Industry and Engineering Progress: 1-26[2024-04-08]. DOI: 10.16085/j.issn.1000-6613.2023-1914http://dx.doi.org/10.16085/j.issn.1000-6613.2023-1914.
LIU Y J, TAYYAB M, PEI W K, et al. The precision defect engineering with nonmetallic element refilling strategy in g-C3N4 for enhanced photocatalytic hydrogen production [J]. Small, 2023, 19(21): 2208117.
SHEN J C, LUO C H, QIAO S S, et al. Single-atom Cu channel and N-vacancy engineering enables efficient charge separation and transfer between C3N4 interlayers for boosting photocatalytic hydrogen production [J]. ACS Catalysis, 2023, 13(9): 6280-6288.
DHARMARAJAN N P, VIDYASAGAR D, YANG J H, et al. Bio-inspired supramolecular self-assembled carbon nitride nanostructures for photocatalytic water splitting [J]. Advanced Materials, 2024, 36(2): 2306895.
WANG B, HE H J, HAO H J, et al. Melamine-phytic acid derived supramolecular synthesis of g-C3N4 for enhanced solar hydrogen evolution [J]. International Journal of Hydrogen Energy, 2023, 48(35): 13097-13108.
班昌胜, 李军, 金央, 等. 超分子前体制备g-C3N4/g-C3N4同质结及光催化性能研究[J]. 无机盐工业, 2022, 54(3): 125-131.
BAN C S, Ll J, JIN Y, et al. Study on preparation of g-C3N4/g-C3N4 homojunction by supramolecular precursor and its photocatalytiic property [J]. Inorganic Chemicals Industry, 2022, 54(3): 125-131.
SUN X H, SHI Y X, LU J L, et al. Template-free self-assembly of three-dimensional porous graphitic carbon nitride nanovesicles with size-dependent photocatalytic activity for hydrogen evolution [J]. Applied Surface Science, 2022, 606: 154841.
SU T M, HOOD Z D, NAGUIB M, et al. 2D/2D heterojunction of Ti3C2/g-C3N4 nanosheets for enhanced photocatalytic hydrogen evolution [J]. Nanoscale, 2019, 11(17): 8138-8149.
WANG Y J, LIU M M, FAN F, et al. Enhanced full-spectrum photocatalytic activity of 3D carbon-coated C3N4 nanowires via giant interfacial electric field [J]. Applied Catalysis B: Environmental, 2022, 318: 121829.
XIA P F, LI G J, LI X W, et al. Synthesis of g-C3N4 from various precursors for photocatalytic H2 evolution under the visible light [J]. Crystals, 2022, 12(12): 1719.
ZHANG M W, LIANG R L, YANG N, et al. Eutectic etching toward in-plane porosity manipulation of Cl-terminated MXene for high-performance dual-ion battery anode [J]. Advanced Energy Materials, 2022, 12(1): 2102493.
SUN H R, WANG L J, GUO F, et al. Fe-doped g-C3N4 derived from biowaste material with Fe—N bonds for enhanced synergistic effect between photocatalysis and Fenton degradation activity in a broad pH range [J]. Journal of Alloys and Compounds, 2022, 900: 163410.
HARIKRISHNAN L, RAJARAM M, NATARAJAN A, et al. Boron-doped exfoliated g-C3N4 nanosheet-based phosphors for white light-emission and photocatalytic degradation [J]. ACS Applied Nano Materials, 2023, 6(18): 16947-16959.
HONG Y Z, ZHANG X, LIN X, et al. Ultrathin 2D g-C3N4 nanosheets for visible-light photocatalytic reforming of cellulose into H2 under neutral conditions [J]. Journal of Chemical Technology & Biotechnology, 2022, 97(7): 1717-1725.
尹泽, 高博熠, 刘愿强, 等. 花状g-C3N4/Pd/Bi2WO6光催化剂协同降解苯扎贝特机理研究[J]. 中国环境科学: 1-12[2024-02-21]. DOI: 10.19674/j.cnki.issn1000-6923.20240221.002http://dx.doi.org/10.19674/j.cnki.issn1000-6923.20240221.002.
YIN Z, GAO B Y, LlU Y Q, et al. Study on flower-like g-C3N4/Pd/Bi2WO6 heterostructure and its synergistic degradation mechanism of bezafibrate [J]. China Environmental Science: 1-12[2024-02-21]. DOI: 10.19674/j.cnki.issn1000-6923.20240221.002http://dx.doi.org/10.19674/j.cnki.issn1000-6923.20240221.002.
SU T M, MENG J D, XIAO Y, et al. In situ growth of cobalt on ultrathin Ti3C2Tx as an efficient cocatalyst of g-C3N4 for enhanced photocatalytic CO2 reduction [J]. Chinese Journal of Chemical Engineering, 2023, 64: 76-86.
于筱航, 邱鹏远, 钟山, 等. 基于丝网印刷法制备的Pd/TiO2薄膜用于光催化CO2转化[J]. 低碳化学与化工, 2023, 48(3): 69-77+97.
YU X H, QlU P Y, ZHONG S, et al. Preparation of Pd/TiO2 film based on screen-printing method and itsphotocatalytic performance in CO2 conversion [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(3): 69-77+97.
MEN C Z, CHEN L Y, JI H B, et al. Synergistic effect of internal electric field and ligand-to-metal charge transfer in Z-scheme CuPc/ZnIn2S4 for boosting photocatalytic hydrogen evolution [J]. Chemical Engineering Journal, 2023, 473: 145173.
李勇, 高佳琦, 杜超, 等. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467.
LI Y, GAO J Q, DU C, et al. Preparation of Pd/TiO2 film based on screen-printing method and its photocatalytic performance in CO2 conversion [J]. CIESC Journal, 2023, 74(6): 2458-2467.
PENG H P, YANG H C, HAN J J, et al. Defective ZnIn2S4 nanosheets for visible-light and sacrificial-agent-free H2O2 photosynthesis via O2/H2O redox [J]. Journal of the American Chemical Society, 2023, 145(50): 27757-27766.
XU X Y, CHEN X, LIU G P, et al. Pt nanoparticles mediated Bi12O17Cl2 nanosheets for enhanced organic pollutants photodegradation: Boosting kinetics and molecular oxygen activation [J]. Ceramics International, 2023, 49(9): 13289-13297.
LI S M, WU F, LIN R B, et al. Enabling photocatalytic hydrogen production over Fe-based MOFs by refining band structure with dye sensitization [J]. Chemical Engineering Journal, 2022, 429: 132217.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构