浏览全部资源
扫码关注微信
1.宁夏大学 化学化工学院 省部共建煤炭高效利用与绿色化工国家重点实验室,宁夏 银川 750021
2.宁夏大学 测试分析中心,宁夏 银川 750021
徐青文(1998—),硕士,研究方向为有机小分子催化制氢,E-mail:1983445269@qq.com。
李鹏(1976—),硕士,讲师,研究方向为应用化学,E-mail:lip@nxu.edu.cn;
马清祥(1980—),博士,研究员,研究方向为应用催化与煤基下游高附加值产品合成,E-mail:maqx@nxu.edu.cn。
纸质出版日期:2024-09-25,
收稿日期:2024-04-02,
修回日期:2024-05-06,
移动端阅览
徐青文,柯举仓,李蕊等.制备方法对Cu/Ce0.8Zr0.2O2催化剂催化甲醇水蒸气重整制氢性能的影响[J].低碳化学与化工,2024,49(09):33-40.
XU Qingwen,KE Jucang,LI Rui,et al.Effects of preparation methods on catalytic performances of Cu/Ce0.8Zr0.2O2 catalysts for methanol steam reforming to produce hydrogen[J].Low-carbon Chemistry and Chemical Engineering,2024,49(09):33-40.
徐青文,柯举仓,李蕊等.制备方法对Cu/Ce0.8Zr0.2O2催化剂催化甲醇水蒸气重整制氢性能的影响[J].低碳化学与化工,2024,49(09):33-40. DOI: 10.12434/j.issn.2097-2547.20240135.
XU Qingwen,KE Jucang,LI Rui,et al.Effects of preparation methods on catalytic performances of Cu/Ce0.8Zr0.2O2 catalysts for methanol steam reforming to produce hydrogen[J].Low-carbon Chemistry and Chemical Engineering,2024,49(09):33-40. DOI: 10.12434/j.issn.2097-2547.20240135.
制备方法会影响催化剂中Cu物种种类、分散性及其与载体之间的相互作用。分别采用沉积沉淀法、氨蒸法、浸渍法和共沉淀法制备了以Ce
0.8
Zr
0.2
O
2
固溶体为载体、Cu负载量(质量分数)为15%的Cu/Ce
0.8
Zr
0.2
O
2
催化剂。采用XRD、N
2
物理吸/脱附、N
2
O滴定和SEM等对催化剂的物相组成、织构性质、Cu分散度和微观结构等进行了表征,并采用固定床反应器评价了催化剂的甲醇水蒸气重整制氢催化性能。结果表明,与其他3种方法制备的Cu/Ce
0.8
Zr
0.2
O
2
催化剂相比,采用沉积沉淀法制备的Cu/Ce
0.8
Zr
0.2
O
2
催化剂(Cu/Ce
0.8
Zr
0.2
O
2
-DP)具有相对最大的比表面积(82.5 m
2
/g)和Cu比表面积(206.0 m
2
/g),以及相对最高的Cu分散度(30.5%)。在温度为250 ℃、常压、
n
(去离子水):
n
(甲醇)为1.3:1.0和液时空速为6 mL/(g·h)的条件下反应24 h,Cu/Ce
0.8
Zr
0.2
O
2
-DP表现出相对最优的催化性能,其甲醇转化率为95.2%,产氢速率为286.8 mmol/(g·h),CO选择性为0.86%。
The preparation methods can affect the type and dispersion of Cu species
as well as the interaction between Cu species and supports in catalysts. Cu/Ce
0.8
Zr
0.2
O
2
catalysts with Ce
0.8
Zr
0.2
O
2
sosolid as the support and Cu loading (mass fraction) of 15% were prepared by deposition precipitation
ammonia evaporation
impregnation and co-precipitation methods
respectively. The phase compositions
texture properties
Cu dispersions and microstructures of the catalysts were characterized by XRD
N
2
physical adsorption/desorption
N
2
O titration
SEM
etc. And the catalytic performances of the catalysts for methanol steam reforming to prod
uce hydrogen were evaluated in a fixed-bed reactor. The results show that compared with the Cu/Ce
0.8
Zr
0.2
O
2
catalysts prepared by another three methods
the Cu/Ce
0.8
Zr
0.2
O
2
catalyst (Cu/Ce
0.8
Zr
0.2
O
2
-DP) prepared by deposition precipitation method has the largest specific surface area (82.5 m
2
/g) and Cu specific surface area (206.0 m
2
/g)
as well as the highest Cu dispersion (30.5%). Under the reaction conditions of 250 ℃
atmospheric pressure
n
(deionized water):
n
(methanol) of 1.3:1.0 and liquid space velocity of 6 mL/(g·h) for 24 h
Cu/Ce
0.8
Zr
0.2
O
2
-DP shows relatively optimal catalytic performance with methanol conversion rate of 95.2%
hydrogen production rate of 286.8 mmol/(g·h) and CO selectivity of 0.86%.
甲醇水蒸气重整Cu基催化剂制备方法铈锆固溶体Cu分散度
methanol steam reformingCu-based catalystspreparation methodscerium-zirconium sosolidCu dispersion
LI Y. New energy utilization in environmental design and realization [J]. Energy Reports, 2022, 8: 9211-9220.
张宏伟, 朱海波, 吴欣茹. “双碳”目标下绿色清洁能源技术现状与发展趋势[J]. 石油科学通报, 2023, 8(5): 555-576.
ZHANG H W, ZHU H B, WU X R, et al. Status quo and future trends of green and clean energy technology toward “dual carbon” goal [J]. Petroleum Science Bulletin, 2023, 8(5): 555-576.
HOU H J M. Hydrogen energy production using manganese/semiconductor system inspired by photosynthesis [J]. International Journal of Hydrogen Energy, 2017, 42(12): 8530-8538.
MA L, GONG B, TRAN T, et al. Cr2O3 promoted skeletal Cu catalysts for the reactions of methanol steam reforming and water gas shift [J]. Catalysis Today, 2000, 63(2): 499-505.
邢月, 杨劭杰, 曹利星,等. 甲醇水蒸气重整制氢CuO-ZnO/CeO2催化剂的制备及性能[J]. 石油化工, 2022, 51(9): 1011-1016.
XING Y, YANG S J, CAO L X, et al. Preparation and performance of CuO-ZnO/CeO2 catalyst for producing hydrogen via methanol steam reforming [J]. Petrochemical Technology, 2022, 51(9): 1011-1016.
刘晓菲. 构建Cu-稀土金属氧化物(Cu-REO)催化剂用于甲醇水蒸气重整制氢[D]. 南昌: 南昌大学, 2023.
LIU X F. Construction of Cu-rare earth oxide (Cu-REO) catalysts for methanol steam reforming to produce hydrogen [D]. Nanchang: Nanchang University, 2013.
SANCHES S, FLORES J H, AVILLEZ R R D, et al. Influence of preparation methods and Zr and Y promoters on Cu/ZnO catalysts used for methanol steam reforming [J]. International Journal of Hydrogen Energy, 2012, 37(8): 6572-6579.
YAO C Z, WANG L C, LIU Y M, et al. Effect of preparation method on the hydrogen production from methanol steam reforming over binary Cu/ZrO2 catalysts [J]. Applied Catalysis A: General, 2006, 297(2): 151-158.
HUANG R J, SAKTHINATHAN S, CHIU T W, et al. Hydrothermal synthesis of high surface area CuCrO2 for H2 production by methanol steam reforming [J]. RSC Advances, 2021, 11(21): 12607-12613.
SONG Q L, MEN Y, WANG J G, et al. Methanol steam reforming for hydrogen production over ternary composite ZnyCe1Zr9Ox catalysts [J]. International Journal of Hydrogen Energy, 2020, 45(16): 9592-9602.
LIU J X, ZHAO Z, XU C M, et al. Structure, synthesis, and catalytic properties of nanosize cerium-zirconium-based solid solutions in environmental catalysis [J]. Chinese Journal of Catalysis, 2019, 40(10): 1438-1487.
OGUCHI H, NISHIGUCHI T, MATSUMOTO T, et al. Steam reforming of methanol over Cu/CeO2/ZrO2 catalysts [J]. Applied Catalysis A: General, 2005, 281(1/2): 69-73.
JIANG X Y, YANG W B, SONG H, et al. Formic acid assisted synthesis of Cu-ZnO-Al2O3 catalyst and its performance in CO2 hydrogenation to methanol [J]. Journal of Fuel Chemistry and Technology, 2023, 51(1): 120-128.
刘建军, 徐香兰, 刘文明, 等. 不同铈和锆前体对铈锆固溶体性能的影响[J]. 南昌大学学报(理科版), 2013, 37(4): 371-376.
LIU J J, XU X L, LIU W M, et al. Influence of Ce and Zr precursors on the properties of Ce-Zr solid solution [J]. Journal of Nanchang University (Natural Science), 2013, 37(4): 371-376.
YANG S Q, ZHOU F , LIU Y J, et al. Morphology effect of ceria on the performance of CuO/CeO2 catalysts for hydrogen production by methanol steam reforming [J]. International Journal of Hydrogen Energy, 2019, 44(14): 7252-7261.
REDDY B M, RAO K N, BHARALI P. Copper promoted cobalt and nickel catalysts supported on ceria-alumina mixed oxide: Structural characterization and CO oxidation activity [J]. Industrial & Engineering Chemistry Research, 2009, 48(18): 8478-8486.
REDDY B M, BHARALI P, SAIKIA P, et al. Structural characterization and catalytic activity of nanosized CexM1-xO2 (M = Zr and Hf) mixed oxides [J]. The Journal of Physical Chemistry C, 2008, 112(31): 11729-11737.
ZHONG C L, GUO X M, MAO D S, et al. Effects of alkaline-earth oxides on the performance of a CuO-ZrO2 catalyst for methanol synthesis CO2 hydrogenation [J]. RSC Advances, 2015, 5(65): 52958-52965.
LIU C H, GUO X M, GUO Q S, et al. Methanol synthesis from CO2 hydrogenation over copper catalysts supported on MgO-modified TiO2 [J]. Journal of Molecular Catalysis A: Chemical, 2016, 425: 86-93.
LI S Z, GUO L M, ISHIHARA T. Hydrogenation of CO2 to methanol over Cu/AlCeO catalyst [J]. Catalysis Today, 2020, 339: 352-361.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构