浏览全部资源
扫码关注微信
常州大学 石油与天然气工程学院,油气与新能源储运技术省高校重点实验室,江苏 常州 213016
袁巧玲(1996—),硕士研究生,研究方向为油气储运安全,E-mail:1687915625@qq.com。
周诗岽(1978—),博士,教授,博士研究生导师,研究方向为油气管输技术与气体水合物利用,E-mail:zsd@cczu.edu.cn。
纸质出版日期:2024-09-25,
收稿日期:2024-04-02,
修回日期:2024-04-26,
移动端阅览
袁巧玲,周诗岽,吴文景等.隧道内埋地掺氢天然气管道泄漏扩散研究[J].低碳化学与化工,2024,49(09):123-132.
YUAN Qiaoling,ZHOU Shidong,WU Wenjing,et al.Study on leakage and diffusion of hydrogen-doped natural gas buried pipelines in tunnels[J].Low-carbon Chemistry and Chemical Engineering,2024,49(09):123-132.
袁巧玲,周诗岽,吴文景等.隧道内埋地掺氢天然气管道泄漏扩散研究[J].低碳化学与化工,2024,49(09):123-132. DOI: 10.12434/j.issn.2097-2547.20240134.
YUAN Qiaoling,ZHOU Shidong,WU Wenjing,et al.Study on leakage and diffusion of hydrogen-doped natural gas buried pipelines in tunnels[J].Low-carbon Chemistry and Chemical Engineering,2024,49(09):123-132. DOI: 10.12434/j.issn.2097-2547.20240134.
氢能作为一种理想的清洁能源备受青睐,将氢气掺入到天然气管道中是实现氢能大规模输送的有效途径。在输送过程中,管道一旦发生泄漏便会严重影响管道的安全运行,目前隧道内埋地掺氢天然气管道的泄漏扩散规律尚不明确。建立了隧道内埋地掺氢天然气管道泄漏扩散数值模型,探究了掺氢比(体积分数)、泄漏孔径和来流风速对混合气体泄漏扩散特性的影响。结果表明,掺氢天然气泄漏后在隧道顶部大量积聚,呈现出中心区域浓度高、边缘区域浓度低的现象。随着掺氢比增大,混合气体爆炸下限降低,相同时间内的泄漏量增多。因隧道空间密闭,混合气体在短时间内不能充分扩散,因此掺氢比越大,爆炸危险区域越大,达到爆炸极限的时间越短。当掺氢比由5%增加到20%时,爆炸危险区域增加了3.18%,混合气体达到爆炸极限的时间缩短了3.7%。泄漏孔径越大,混合气体泄漏量越大,爆炸危险区域越大,混合气体达到爆炸极限的时间越短。当泄漏孔径由20 mm增大至100 mm时,沿隧道径向的爆炸危险区域由距地面1.49 m减小至0.30 m,轴向爆炸危险区域由13.4 m增大至91.9 m,达到爆炸极限的时间由95.2 s缩短至11.3 s。来流风速的平流输送作用促进了混合气体沿隧道轴向的扩散,缩小了隧道顶部的高浓度区域,爆炸危险区域显著缩小。当来流风速由0.5 m/s增大至2.0 m/s时,爆炸危险区域缩小了81.7%。因此,隧道内气体发生泄漏时应及时通风,避免燃烧爆炸等事故的发生。该研究结果可为隧道内埋地掺氢天然气管道的安全运行提供理论依据。
Hydrogen energy is favored as an ideal clean energy source
and doping hydrogen into natural gas pipelines is an effective way to realize large-scale delivery of hydrogen energy. Once pipelines leaking during transportation
the safe operation of pipelines will be seriously affected. At present
the leakage and diffusion law of hydrogen-doped natural gas buried pipelines in tunnels is not clear. A numerical model of leakage and diffusion for hydrogen-doped natural gas buried pipelines in tunnels was established to study the effects on hydrogen doping ratio (volume fraction)
leakage aperture and incoming wind speed of leakage and diffusion characteristics of the gas mixture. The results show that hydrogen-doped natural gas accumulates at the top of tunnel after leaking
showing the phenomenon of high concentration in the center area and low concentration in the edge area. With the increase of hydrogen doping ratio
the lower explosion limit of the gas mixture decreases
and the leakage volume increases. Due to the confined space of tunnel
the gas mixture can not be fully diffused in a short period of time
so the larger the hydrogen doping ratio
the larger the explosion area
and the shorter the time to reach explosion limit. When hydrogen doping ratio increases from 5% to 20%
the explosion danger area increases by 3.18%
the gas to reach explosion limit time decreases by 3.7%. As the leakage aperture increases
the leakage amount of the mixed gas increases
the explosion danger area increases
and the time for the mixed gas to reach the explosion limit decreases. When leakage aperture increases from 20 mm to 100 mm
the distance from ground to the explosion danger area in the radial direction of tunnel decreases from 1.49 m to 0.30 m
the axial explosion danger area increases from 13.4 m to 91.9 m
and the time for gas to reach explosion limit decreases from 95.2 s to 11.3 s. The advection transport effect of incoming wind speed promotes the diffusion of mixed gas along axial direction of tunnel
reduces the high concentration area at the top of tunnel
and makes the explosion danger area significantly smaller. When incoming wind speed increases from 0.5 m/s to 2.0 m/s
the explosion danger area decreases by 81.7%. Therefore
tunnels should be ventilated in time when gas leakage occurs to avoid the occurrence of combustion and explosion. The results of this study can provide a theoretical basis for the safe operation of hydrogen-doped natural gas buried pipelines.
数值模拟埋地掺氢天然气管道泄漏扩散掺氢比爆炸极限
numerical simulationhydrogen-doped natural gas buried pipelinesleakage and diffusionhydrogen doping ratioexplosion limit
BIAN J, YANG J, LI Y X, et al. Thermodynamic and economic analysis of a novel hydrogen liquefaction process with LNG precooling and dual-pressure Brayton cycle [J]. Energy Conversion and Management, 2021, 250: 114904.
HAFSI Z, ELAOUD S, MISHRA M. A computational modelling of natural gas flow in looped network: Effect of upstream hydrogen injection on the structural integrity of gas pipelines [J]. Journal of Natural Gas Science and Engineering, 2019, 64: 107-117.
WITKOWSKI A, RUSIN A, MAJKUT M, et al. Analysis of compression and transport of the methane/hydrogen mixture in existing natural gas pipelines [J]. International Journal of Pressure Vessels and Piping, 2018, 166: 24-34.
YANG F Y, WANG T Z, DENG X T, et al. Review on hydrogen safety issues: Incident statistics, hydrogen diffusion, and detonation process [J]. International Journal of Hydrogen Energy, 2021, 46(61): 31467-31488.
MAHAJAN D, TAN K, VENKATESH T, et al. Hydrogen blending in gas pipeline networks—A Review [J]. Energies, 2022, 15: 3582.
WIERZBA I, KILCHYK V. Flammability limits of hydrogen-carbon monoxide mixtures at moderately elevated temperatures [J]. International Journal of Hydrogen Energy, 2001, 26(6): 639-643.
PANG L, LI G, YANG K Y, et al. Characteristics of external explosions induced by vented hydrogen deflagration [J]. International Journal of Hydrogen Energy, 2023, 48(47): 18129-18140.
PANG L, HU Q R, ZHAO J J, et al. Numerical study of the effects of vent opening time on hydrogen explosions [J]. International Journal of Hydrogen Energy, 2019, 44(29):15689-15701.
RASAD K, PITTS W M, YANG J C. A numerical study of the release and dispersion of a buoyant gas in partially confined spaces [J]. International Journal of Hydrogen Energy, 2011, 36(8): 52000.
DE-VRIES H, MOKHOV A V, LEVINSKY H B. The impact of natural gas/hydrogen mixtures on the performance of end-use equipment: Interchangeability analysis for domestic appliances [J]. Applied Energy, 2017, 208: 1007-1019.
PLUVINAGE G, CAPELLE J, MELIANI M H. Pipe networks transporting hydrogen pure or blended with natural gas, design and maintenance [J]. Engineering Failure Analysis, 2019, 106: 104164.
MESSAOUDANI Z L, RIGAS F, BINTI HAMID M D, et al. Hazards, safety and knowledge gaps on hydrogen transmission via natural gas grid: A critical review [J]. International Journal of Hydrogen Energy, 2016, 41(39): 17511-17525.
WANG X M, TAN Y F, ZHANG T T, et al. Diffusion process simulation and ventilation strategy for small-hole natural gas leakage in utility tunnels [J]. Tunnelling and Underground Space Technology, 2020, 97(3): 103276.
ZHANG P, LAN H Q. Effects of ventilation on leakage and diffusion law of gas pipeline in utility tunnel [J]. Tunnelling and Underground Space Technology, 2020, 105: 103557.
BU F X, LIU Y, WANG Z X, et al. Analysis of natural gas leakage diffusion characteristics and prediction of invasion distance in utility tunnels [J]. Journal of Natural Gas Science and Engineering, 2021, 96: 104270.
MARANGON A, CARCASSI M N. Hydrogen-methane mixtures: Dispersion and stratification studies [J]. International Journal of Hydrogen Energy, 2014, 39(11): 6160-6168.
ZHU J L, PAN J, ZHANG Y X, et al. Leakage and diffusion behavior of a buried pipeline of hydrogen-blended natural gas [J]. International Journal of Hydrogen Energy, 2023, 48(30): 11592-11610.
LI H, CAO X W, DU H M, et al. Numerical simulation of leakage and diffusion distribution of natural gas and hydrogen mixtures in a closed container [J]. International Journal of Hydrogen Energy, 2022, 47(84): 35928-35939.
THAWANI B, HAZAEL R, CRITCHLEY R. Numerical modelling of hydrogen leakages in confined spaces for domestic applications [J]. International Journal of Hydrogen Energy, 2024, 56(22): 797-806.
SU Y, LI J F, YU B, et al. Numerical investigation on the leakage and diffusion characteristics of hydrogen-blended natural gas in a domestic kitchen [J]. Renewable Energy, 2022, 189: 899-916.
LU H F, HUANG K, FU L D, et al. Study on leakage and ventilation scheme of gas pipeline in tunnel [J]. Journal of Natural Gas Science and Engineering, 2018, 53: 347-358.
SHAO X Y, YANG S Y, YUAN Y L, et al. Study on the difference of dispersion behavior between hydrogen and methane in utility tunnel [J]. International Journal of Hydrogen Energy, 2022, 47(12): 8130-8144.
HAN H, CHANG X W, DUAN P F, et al. Study on the leakage and diffusion behavior of hydrogen-blended natural gas in utility tunnels [J]. Journal of Loss Prevention in the Process Industries, 2023, 85: 105151.
付明福, 黄翼鹏, 张明星, 等. 隧道内天然气埋地管道泄漏扩散特征数值模拟[J]. 安全与环境学报, 2024, 24(3): 1105-1113.
FU M F, HUANG Y P, ZHANG M X, et al. Numerical simulation of leakage and diffusion characteristics of natural gas buried pipelines in tunnels [J]. Journal of Safety and Environment, 2024, 24(3): 1105-1113.
LU H C, GUO B L, CHEN X H, et al. Numerical investigation on leakage and diffusion characteristics of buried hydrogen-blended natural gas pipelines [J]. International Journal of Hydrogen Energy, 2024, 59(46): 1491-1506.
ZENG F B, JIANG Z G, ZHENG D F, et al. Study on numerical simulation of leakage and diffusion law of parallel buried gas pipelines in tunnels [J]. Process Safety and Environmental Protection, 2023, 177: 258-277.
WU L W, QIAO L, FAN J M, et al. Investigation on natural gas leakage and diffusion characteristics based on CFD [J]. Gas Science and Engineering, 2024, 123: 205238.
LIU X, WANG Y, LIANG Y J, et al. CFD analysis of leakage and diffusion characteristics in the buried hydrogen-blended natural gas pipeline [J]. International Journal of Hydrogen Energy, 2024, 60(22): 354-368.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构