浏览全部资源
扫码关注微信
1.天津城建大学 理学院,天津 300384
2.中国科学院 宁波材料技术与工程研究所,浙江 宁波 315201
3.宁波工程学院 材料与化学工程学院,浙江 宁波 315211
钟梦宇(1998—),硕士研究生,研究方向为纳米催化,E-mail:Zhongmengyu@nimte.ac.cn。
于洪波(1984—),博士,副研究员,研究方向为纳米催化,E-mail:hongboyu@nbut.edu.cn;
周永柱(1983—),博士,高级实验师,研究方向为有机化工,E-mail:yzzhou2011@163.com;
尹宏峰(1977—),博士,研究员,研究方向为工业催化,E-mail:yinhf@nimte.ac.cn。
纸质出版日期:2024-11-25,
收稿日期:2024-03-23,
修回日期:2024-04-20,
移动端阅览
钟梦宇,于洪波,周永柱等.Ru@Alx-mSiO2中空介孔核壳型催化剂苯酚加氢脱氧制苯性能研究[J].低碳化学与化工,2024,49(11):43-49.
ZHONG Mengyu,YU Hongbo,ZHOU Yongzhu,et al.Study on performances of Ru@Alx-mSiO2 hollow mesoporous core-shell catalysts for phenol hydrodeoxygenation to benzene[J].Low-carbon Chemistry and Chemical Engineering,2024,49(11):43-49.
钟梦宇,于洪波,周永柱等.Ru@Alx-mSiO2中空介孔核壳型催化剂苯酚加氢脱氧制苯性能研究[J].低碳化学与化工,2024,49(11):43-49. DOI: 10.12434/j.issn.2097-2547.20240119.
ZHONG Mengyu,YU Hongbo,ZHOU Yongzhu,et al.Study on performances of Ru@Alx-mSiO2 hollow mesoporous core-shell catalysts for phenol hydrodeoxygenation to benzene[J].Low-carbon Chemistry and Chemical Engineering,2024,49(11):43-49. DOI: 10.12434/j.issn.2097-2547.20240119.
为解决负载型Ru催化剂在酚类化合物加氢脱氧反应中稳定性差的问题,以含Ru的二氧化硅微球(Ru@SiO
2
)为前驱体、偏铝酸钠(NaAlO
2
)为铝源,在碱性条件下通过选择性蚀刻制备了一系列不同Al负载量(质量分数)的中空介孔核壳型催化剂Ru@Al
x
-mSiO
2
(
x
= 0.5、1.0、1.5或2.0)。采用TEM、HAADF-STEM、XRD、N
2
吸/脱附、NH
3
-TPD和H
2
-TPD等对催化剂的微观结构和理化性质进行了表征。以苯酚加氢脱氧制备苯为模型反应,考察了Ru@Al
x
-mSiO
2
催化剂的催化性能。结果表明,在60 ℃、2.0 MPa的反应条件下,向Ru@mSiO
2
中引入Al能显著提高苯选择性,这是因为Al的负载提供了丰富的酸性位点,其不仅可以辅助金属Ru解离H
2
增加苯酚加氢活性,还能够增强苯酚的脱氧性能进而提高苯选择性。在所有催化剂中,Ru@Al
1.0
-mSiO
2
展现出了最高的苯酚转化率(80.5%)和苯选择性(96.5%),这归因于金属Ru与硅铝酸盐壳层间的协同效应。此外,由于中空介孔硅铝酸盐壳层的限域保护作用,Ru@Al
1.0
-mSiO
2
催化剂在多次催化循环加氢脱氧实验后,仍展现出了优异的稳定性。
In order to address the issue of poor stability of loaded Ru catalysts in the hydrodeoxygenation reaction of phenolic compounds
a series of hollow mesoporous core-shell catalysts
Ru@Al
x
-mSiO
2
(
x
= 0.5
1.0
1.5 or 2.0)
with varying Al loadings (mass fractions) were prepared by selective etching under alkaline conditions with Ru-containing silica microspheres (Ru@SiO
2
) as the precursor and sodium meta-aluminate (NaAlO
2
) as the aluminum source. The microstructures and physicochemical properties of the catalysts were characterized by TEM
HAADF-STEM
XRD
N
2
adsorption/desorption
NH
3
-TPD and H
2
-TPD. The catalytic performances of Ru@Al
x
-mSiO
2
catalysts were investigated using phenol hydrodeoxygenation to prepare benzene as a model reaction. The results show that the incorporation of Al into Ru@mSiO
2
under the reaction conditions of 60 ℃ and 2.0 MPa can significantly improve the selectivity of benzene. This is attributed to the fact that the Al loading provideds abundant acidic si
tes
which can not only assist the dissociation of H
2
from the metal Ru to increase the phenol hydrogenation activity
but also enhance the deoxygenation of phenol and thus improve the benzene selectivity. Among all the catalysts
Ru@Al
1.0
-mSiO
2
exhibits the highest phenol conversion (80.5%) and benzene selectivity (96.5%)
which is attributed to the synergistic effect between the Ru metal and the silicoaluminate shell layer. Furthermore
the hollow mesoporous silica-aluminate shell layer exhibites a domain-limiting protective effect
and Ru@Al
1.0
-mSiO
2
still exhibits excellent stability in multiple catalytic cycle hydrodeoxygenation experiments.
酚类化合物Ru基核壳型催化剂苯酚加氢脱氧苯
phenolic compoundRu-based core-shell catalystsphenolhydrodeoxygenationbenzene
CARL V, DAVIDE T, THOMAS F A. Environmental multiobjective optimization of the use of biomass resources for energy [J]. Environmental Science & Technology, 2017, 51(6): 3575-3583.
ZHANG T. Taking on all of the biomass for conversion [J]. Science, 2020, 367(6484): 1305-1306.
KARL-HEINZ E, SIMONE G. Biomass—Critical limits to a vital resource [J]. One Earth, 2022, 5(1): 7-9.
CAO Y, ZHANG C, TSANG D C W, et al. Hydrothermal liquefaction of lignin to aromatic chemicals: Impact of lignin structure [J]. Industrial & Engineering Chemistry Research, 2020, 59(39): 16957-16969.
WANG S, LIU Y X, ZHANG M, et al. Construction of a highly active and water-resistant Ni-based catalyst for the HDO reaction of phenol [J]. Energy Fuel, 2022, 6(18): 4183-4196.
孙雷, 胡睿, 王杰. 花生秸秆热解挥发分在HZSM-5负载Ga催化剂上的裂解特性[J]. 低碳化学与化工, 2024, 49(4): 63-70.
SUN L, HU R, WANG J. Cracking characteristics of peanut straw pyrolysis volatiles over Ga-loaded HZSM-5 catalysts [J]. Low-Carbon Chemistry and Chemical Engineering, 2024, 49(4): 63-70.
WANG H, ZHAO W R, REHMAN M U, et al. Copper phyllosilicate nanotube catalysts for the chemosynthesis of cyclohexane via hydrodeoxygenation of phenol [J]. ACS Catalysis, 2022, 12(8): 4724-4736.
FATNASSI A, CAMMARANO C, OLIVIERO E, et al. Carbon-aerogel-supported noble-metal nanoparticles as hydrogenation catalysts [J]. ACS Applied Nano Materials, 2022, 5(10): 14227-14234.
WU J W, ZHU X F, FU Y, et al. Study on selective preparation of phenolic products from lignin over Ru-Ni bimetallic catalysts supported on modified HY zeolite [J]. Industrial & Engineering Chemistry Research, 2022, 61(8): 3206-3217.
TRAN C C, HAN Y L, GARCIA-PEREZ M, et al. Synergistic effect of Mo-W carbides on selective hydrodeoxygenation of guaiacol to oxygen-free aromatic hydrocarbons [J]. Catalysis Science & Technology, 2019, 9(6): 1387-1397.
BOULLOSA-EIRAS S, LØDENG R, BERGEM H, et al. Catalytic hydrodeoxygenation (HDO) of phenol over supported molybdenum carbide, nitride, phosphide and oxide catalysts [J]. Catalysis Today, 2014, 223: 44-53.
RAHMAN A, JONNALAGADDA S B. Rapid and selective reduction of adehydes, ketones, phenol, and alkenes with Ni-boride-silica catalysts system at low temperature [J]. Journal of Molecular Catalysis A: Chemical, 2009, 299(1/2): 98-101.
AN Y, CHATTERJEE P, NAIK P, et al. Hydrogen spillover and substrate-support hydrogen bonding mediate hydrogenation of phenol catalyzed by palladium on reducible metal oxides [J]. Chemical Science, 2023, 14(48): 14166-14175.
YANG F F, WANG H, HAN J U, et al. Influence of Re addition to Ni/SiO2 catalyst on the reaction network and deactivation during hydrodeoxygenation of m-cresol [J]. Catalysis Today, 2020, 347: 79-86.
CHEN S S, WANG W C, LI X, et al. Regulating the nanoscale intimacy of metal and acidic sites in Ru/γ-Al2O3 for the selective conversions of lignin-derived phenols to jet fuels [J]. Journal of Energy Chemistry, 2022, 66: 576-586.
MA D, LU S L, LIU X H, et al. Depolymerization and hydrodeoxygenation of lignin to aromatic hydrocarbons with a Ru catalyst on a variety of Nb-based supports [J]. Chinese Journal of Catalysis, 2019, 40(4): 609-617.
WANG S J, WU C Z, YU H B, et al. Fabrication of Ir-CoOx@mesoporous SiO2 nanoreactors for selective hydrogenation of substituted nitroaromatics [J]. ACS Applied Materials & Interfaces, 2020, 12(8): 9966-9976.
CAO X C, ZHAO J P, LONG F, et al. Al-modified Pd@mSiO2 core-shell catalysts for the selective hydrodeoxygenation of fatty acid esters: Influence of catalyst structure and Al atoms incorporation [J]. Applied Catalysis B: Environmental, 2022, 305: 121068.
LI H L, SONG G Y. Ru-catalyzed hydrogenolysis of lignin: Base-dependent tunability of monomeric phenols and mechanistic study [J]. ACS Catalysis, 2019, 9(5): 4054-4064.
YU H B, ZHANG F, WANG S B, et al. Hollow and mesoporous M@aluminosilicate [M = Rh, Pd and Pt] bifunctional catalytic nanoreactors for the hydrodeoxygenation of lignin-derived phenols [J]. New Journal of Chemistry, 2023, 47(34): 16043-16049.
SREETHAWONG T, CHAVADEJ S, NGAMSINLAPASATHIAN S, et al. A modified sol-gel process-derived highly nanocrystalline mesoporous NiO with narrow pore size distribution [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 296(1/2/3): 222-229.
KOLLMAN M S, JIANG X, SUN R K, et al. Towards jet fuel from technical lignins: Feedstock-catalyst-product interactions revealed during catalytic hydrogenolysis [J]. Chemical Engineering Journal, 2023, 451: 138464.
CHO H J, KIM D Y, XU B J. Pore size engineering enabled selectivity control in tandem catalytic upgrading of cyclopentanone on zeolite-encapsulated Pt nanoparticles [J]. ACS Catalysis, 2020, 10(15): 8850-8859.
OGAWA M. Mesoporous silica layer: Preparation and opportunity [J]. The Chemical Record, 2016, 17(2): 217-232.
LV M X, ZHANG Y W, XIN Q H, et al. Pd@Al-containing mesoporous silica yolk-shell-structured nanospheres as high performance nanoreactors for the selective hydrogenolysis of glucose to 1,2-propylene glycol [J]. Chemical Engineering Journal, 2020, 396: 125274.
BATHLA S, TRAN C C, KALIAGUINE S, et al. Doping an oxophilic metal into a metal carbide: Unravelling the synergy between the microstructure of catalyst and its activity and selectivity for hydrodeoxygenation [J]. ACS Catalysis, 2022, 12(22): 13980-13998.
ZHANG Y J, LIU T K, JIA H Y, et al. Brønsted acid-enhanced CoMoS catalysts for hydrodeoxygenation reactions [J]. Catalysis Science & Technology, 2022, 12(11): 3426-3430.
彭洁, 李曜, 储政, 等. 催化剂中金属与载体相互作用的表征研究进展[J]. 低碳化学与化工, 2024, 49(2): 1-9.
PENG J, LI Y, CHU Z, et al. Research progress in characterization of metal-support interactions in catalysts [J]. Low-Carbon Chemistry and Chemical Engineering, 2024, 49(2): 1-9.
ZHANG C, JIA C H, CAO Y, et al. Water-assisted selective hydrodeoxygenation of phenol to benzene over the Ru composite catalyst in the biphasic process [J]. Green Chemistry, 2019, 21(7): 1668-1679.
YAN P H, LI M J, KENNEDY E, et al. The role of acid and metal sites in hydrodeoxygenation of guaiacol over Ni/Beta catalysts [J]. Catalysis Science & Technology, 2020, 10(3): 810-825.
WANG X C, WANG Z Q, ZHOU L L, et al. Efficient hydrodeoxygenation of guaiacol to phenol over Ru/Ti-SiO2 catalysts: The significance of defect-rich TiOx species [J]. Green Chemistry, 2022, 24(15): 5822-5834.
YIN D F, XIN Q H, YU S T, et al. Selective hydrogenation of phenol to cyclohexanone over a highly stable core-shell catalyst with Pd-Lewis acid sites [J]. The Journal of Physical Chemistry C, 2021, 125(49): 27241-27251.
LIU H Z, JIANG T, HAN B X, et al. Selective phenol hydrogenation to cyclohexanone over a dual supported Pd-Lewis acid catalyst [J]. Science, 2009, 326(5957): 1250-1252.
DESHMUKH R R, LEE J W, SHIN U S, et al. Hydrogenation of arenes by dual activation: Reduction of substrates ranging from benzene to C60 fullerene under ambient conditions [J]. Angewandte Chemie International Edition, 2008, 47(45): 8615-8617.
ZHENG B X, WU H H, SONG J L, et al. Production of alkoxyl-functionalized cyclohexylamines from lignin-derived guaiacols [J]. Green Chemistry, 2021, 23: 8441-8447.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构