浏览全部资源
扫码关注微信
1.华东理工大学 化工学院 大型工业反应器工程教育部工程研究中心 化学工程联合国家重点实验室, 上海 200237
2.煤液化气化及高效低碳利用全国重点实验室,上海 200237
朱怡澄(1999—),硕士研究生,研究方向为低碳化工,E-mail:y82210052@ecust.edu.cn。
钱炜鑫(1983—),博士,副教授,研究方向为低碳化工,E-mail:wxqian@ecust.edu.cn。
纸质出版日期:2024-08-25,
收稿日期:2024-03-18,
修回日期:2024-04-01,
移动端阅览
朱怡澄,马宏方,钱炜鑫等.钴、锆共掺杂对铟基催化剂二氧化碳加氢制甲醇性能的影响[J].低碳化学与化工,2024,49(08):115-122.
ZHU Yicheng,MA Hongfang,QIAN Weixin,et al.Effects of co-doping of Co and Zr on performances of In-based catalysts for carbon dioxide hydrogenation to methanol[J].Low-carbon Chemistry and Chemical Engineering,2024,49(08):115-122.
朱怡澄,马宏方,钱炜鑫等.钴、锆共掺杂对铟基催化剂二氧化碳加氢制甲醇性能的影响[J].低碳化学与化工,2024,49(08):115-122. DOI: 10.12434/j.issn.2097-2547.20240110.
ZHU Yicheng,MA Hongfang,QIAN Weixin,et al.Effects of co-doping of Co and Zr on performances of In-based catalysts for carbon dioxide hydrogenation to methanol[J].Low-carbon Chemistry and Chemical Engineering,2024,49(08):115-122. DOI: 10.12434/j.issn.2097-2547.20240110.
CO
2
加氢制甲醇是CO
2
综合利用的重要途径之一。In基催化剂常用于CO
2
加氢合成甲醇反应,其甲醇选择性较高,但CO
2
转化率普遍较低。为研究添加不同比例的Co、Zr对In基催化剂性能的影响,在保持In总物质的量分数不变的情况下,采用共沉淀法制备了不同
n
(Zr):
n
(Co)的In基催化剂,通过Ar低温物
理吸附、X射线衍射(XRD)、高分辨率透射电镜(HRTEM)、X射线光电子能谱(XPS)和H
2
程序升温还原(H
2
-TPR)对催化剂进行了表征,并在温度为240~300 ℃、压力为3.0 MPa和气体空速为7200 mL/(h·g)的条件下对各催化剂的催化性能进行了测试。结果表明,在一定
n
(Zr):
n
(Co)范围内,Co、Zr同时添加的催化剂相对于单独添加Co或Zr的催化剂具有更高的CO
2
转化率和甲醇时空产率。
n
(Zr):
n
(Co)不同会产生不同程度的金属间相互作用,影响催化剂的比表面积、颗粒尺寸和还原性能。当
n
(Zr):
n
(Co)为1:3时,催化剂具有最优的甲醇合成性能,甲醇时空产率可达178 mg/(g·h)。催化剂的CO
2
转化率由高至低依次为Zr
5
Co
15
In、Zr
2.5
Co
17.5
In、Zr
7.5
Co
12.5
In、Co
20
In、Zr
10
Co
10
In、Zr
20
In和In
100
,与氧空位占比变化的趋势一致。Zr
5
Co
15
In催化剂具有更小的颗粒尺寸与更大的比表面积,可以暴露更多的有效活性位点,因此具有更高的还原性和更强的金属间相互作用,其CO
2
转化率可达到13.63%,相比Co
20
In提升了19.9%,相比Zr
20
In提升了64.7%。
CO
2
hydrogenation to methanol is one of promising route for CO
2
utilization. In-based catalysts has high methanol selectivity but low CO
2
conversion rate for CO
2
hydrogenation to methanol. In order to investigate the effects of doping different proportions of Co and Zr on the performances of In-based catalysts
In-based catalysts doped with different
n
(Zr):
n
(Co) were synthesized by co-precipitation method while keeping the same mole fraction of In in the precursor. The catalysts were characterized by low-temperature Ar physical adsorption
X-ray diffraction (XRD)
high resolution transmission electron microscope (HRTEM)
X-ray photoelectron spectroscopy (XPS) and H
2
temperature-programmed reduction (H
2
-TPR). The catalytic performances of each catalyst were tested under the conditions of temperature from 240 ℃ to 300 ℃
pressure of 3.0 MPa and gas space velocity of 7200 mL/(h·g). The results show that the catalysts with Co and Zr at the same time has a higher CO
2
conversion rate and methanol time-sp
ace yield than the catalysts with Co or Zr alone in a certain
n
(Zr):
n
(Co) range.
n
(Zr):
n
(Co) will produce different degrees of metal-to-metal interactions
which will affect the specific surface area
particle size and reduction performance of the catalysts. When the doped
n
(Zr):
n
(Co) is 1:3
the catalyst has the best methanol synthesis ability and the methanol time-space yield is up to 178 mg/(g·h). The CO
2
conversion rate decreases in the order: Zr
5
Co
15
In
Zr
2.5
Co
17.5
In
Zr
7.5
Co
12.5
In
Co
20
In
Zr
10
Co
10
In
Zr
20
In and In
100
which is consistent with the trend of oxygen vacancy ratio. The Zr
5
Co
15
In catalyst has a smaller particle size with a larger specific surface area
which can expose more active sites
and has higher reducibility and stronger intermetallic interactions. The CO
2
conversion rate of Zr
5
Co
15
In can reach 13.63%
which is 19.9% higher than Co
20
In and 64.7% higher than Zr
20
In.
甲醇In基催化剂二氧化碳加氢共沉淀
methanolIn-based catalystscarbon dioxide hydrogenationco-precipitation
YANG P, HE Q, HUANG J, et al. Fluxes of greenhouse gases at two different aquaculture ponds in the coastal zone of southeastern China [J]. Atmospheric Environment, 2015, 115: 269-277.
张臻烨, 胡山鹰, 金涌. 2060中国碳中和——化石能源转向化石资源时代[J].现代化工, 2021, 41(6): 1-5.
ZHANG Z Y, HU S Y, JIN Y. China achieving carbon neutral in 2060, fossil energy to fossil resource era [J]. Modern Chemical Industry, 2021,41(6): 1-5.
MIRPARIZI M, SHAKERIASKI F, SALEHI F, et al. Available challenges and recent progress in carbon dioxide capture, and reusing methods toward renewable energy [J]. Sustainable Energy Technologies and Assessments, 2023, 58: 103365.
SARAVANAN A, SENTHIL-KUMAR P, VO D V N, et al. A comprehensive review on different approaches for CO2 utilization and conversion pathways [J]. Chemical Engineering Science, 2021, 236: 116515.
沈辰阳, 孙楷航, 张月萍, 等. 二氧化碳加氢合成甲醇氧化铟及其负载金属催化剂研究进展[J]. 化工学报, 2023, 74(1): 145-156.
SHEN C Y, SUN K H, ZHANG Y P, et al. Research progresses on In2O3 and In2O3 supported metal catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2023, 74(1): 145-156.
MARTIN O, MARYIN A J, MONDELLI C, et al. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation [J]. Angewandte Chemie International Edition, 2016, 128(21): 6369-6373.
FREI M S, MONDELLI C, GARCIA-MUELAS R, et al. Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO2 hydrogenation [J]. Nature Communications, 2019, 10(1): 3377.
BEHRENS M, STUDT F, KASATKIN I, et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts [J]. Science, 2012, 336(6083): 893-897.
ADELUNG S, MAIRES S, DIETRICH R U. Impact of the reverse water-gas shift operating conditions on the Power-to-Liquid process efficiency [J]. Sustainable Energy Technologies and Assessments, 2021, 43: 100897.
SUN K H, FAN Z G, YE J Y, et al. Hydrogenation of CO2 to methanol over In2O3 catalyst [J]. Journal of CO2 Utilization, 2015, 12: 1-6.
WANG J Y, ZHANG G H, ZHU J, et al. CO2 hydrogenation to methanol over In2O3-based catalysts: From mechanism to catalyst development [J]. ACS Catalysis, 2021, 11(3): 1406-1423.
FREI M S, MONDELLI C, CESARINI A, et al. Role of zirconia in indium oxide-catalyzed CO2 hydrogenation to methanol [J]. ACS Catalysis, 2019, 10(2): 1133-1145.
SHI Z S, TAN Q Q, WU D F. A novel core-shell structured CuIn@SiO2 catalyst for CO2 hydrogenation to methanol [J]. AIChE Journal, 2019, 65(3): 1047-1058.
RUI N, WANG Z Y, SUN K H, et al. CO2 hydrogenation to methanol over Pd/In2O3: Effects of Pd and oxygen vacancy [J]. Applied Catalysis B: Environmental, 2017, 218: 488-497.
GARCIA-TRENCO A, REGOUTZ A, WHITE E R, et al. PdIn intermetallic nanoparticles for the hydrogenation of CO2 to methanol [J]. Applied Catalysis B: Environmental, 2018, 220: 9-18.
AKKHARAPHATTHAWON N, CHANLEK N, CHENG C K, et al. Tuning adsorption properties of GaxIn2-xO3 catalysts for enhancement of methanol synthesis activity from CO2 hydrogenation at high reaction temperature [J]. Applied Surface Science, 2019, 489: 278-286.
BAVYKINA A, YARUINA I, AL ABDULGHANI A J, et al. Turning a methanation Co catalyst into an In-Co methanol producer [J]. ACS Catalysis, 2019, 9(8): 6910-6918.
LIN D F, ZHANG Z, CEN Y Y, et al. The Co-In2O3 interaction concerning the effect of amorphous Co metal on CO2 hydrogenation to methanol [J]. Journal of CO2 Utilization, 2022, 65: 102209.
ZHANG H, MAO D L, ZHANG J X, et al. Regulating the crystal structure of layered double hydroxide-derived Co-In catalysts for highly selective CO2 hydrogenation to methanol [J]. Chemical Engineering Journal, 2023, 452: 139144.
JIA X Y, SUN K H, WANG J, et al. Selective hydrogenation of CO2 to methanol over Ni/In2O3 catalyst [J]. Journal of Energy Chemistry, 2020, 50: 409-415.
ZHAO F G, FAN L L, XU K J, et al. Hierarchical sheet-like Cu/Zn/Al nano catalysts derived from LDH/MOF composites for CO2 hydrogenation to methanol [J]. Journal of CO2 Utilization, 2019, 33: 222-232.
GAO J, SONG F J, LI Y, et al. Cu2In nanoalloy enhanced performance of Cu/ZrO2 catalysts for the CO2 hydrogenation to methanol [J]. Industrial & Engineering Chemistry Research, 2020, 59(27): 12331-12337.
GAO P, LI F, ZHAO N, et al. Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol [J]. Applied Catalysis A: General, 2013, 468: 442-452.
PENZHORN R D, DEVILLERS M, SIRCH M. Storage of tritium in ZrCo alloy: Effect of preexposure to impurities relevant to the fusion fuel cycle [J]. Journal of Nuclear Materials, 1991, 179: 863-866.
MAO D L, ZHANG H, ZHANG J X, et al. The influence of the compositions and structures of Cu-ZrO2 catalysts on the catalytic performance of CO2 hydrogenation to CH3OH [J]. Chemical Engineering Journal, 2023, 471: 144605.
YE J Y, LIU C J, MEI D H, et al. Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3(110): A DFT study [J]. ACS Catalysis, 2013, 3(6): 1296-1306.
GUO J X, WANG Z Y, LI J L, et al. In-Ni intermetallic compounds derived from layered double hydroxides as efficient catalysts toward the reverse water gas shift reaction [J]. ACS Catalysis, 2022, 12(7): 4026-4036.
ZHANG P Y, NA W, ZUO J Y, et al. CO2 hydrogenation to methanol over hydrothermally synthesized Inx-Zry catalysts [J]. Molecular Catalysis, 2023, 538: 112977.
ZHANG R, LU Y, WEI L, et al. Synthesis and conductivity properties of Gd0.8Ca0.2BaCo2O5+δ double perovskite by sol-gel combustion [J]. Journal of Materials Science: Materials in Electronics, 2015, 26: 9941-9948.
QIN X F, LI H B, WANG K X, et al. Ornidazole degradation by PMS activated by Co-Zr-TiO2 with abundant oxygen vacancies: Performance, mechanism and degradation pathway [J]. Process Safety and Environmental Protection, 2024, 183: 163-177.
CHEN C B, LIU Y, WANG Q, et al. The role of Zr as promoter in the CoZr catalysts for Fischer-Tropsch synthesis [J]. Fuel, 2024, 359: 130405.
LI W H, ZHANG G H, JIANG X, et al. CO2 hydrogenation on unpromoted and M-promoted Co/TiO2 catalysts (M = Zr, K, Cs): Effects of crystal phase of supports and metal-support interaction on tuning product distribution [J]. ACS Catalysis, 2019, 9(4): 2739-2751.
DANG S S, YANG H Y, GAO P, et al. A review of research progress on heterogeneous catalysts for methanol synthesis from carbon dioxide hydrogenation [J]. Catalysis Today, 2019, 330: 61-75.
ZHONG J W, YANG X F, WU Z L, et al. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol [J]. Chemical Society Reviews, 2020, 49(5): 1385-1413.
KATTLE S, LIU P, CHEN J G. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface [J]. Journal of the American Chemical Society, 2017, 139(29): 9739-9754.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构