浏览全部资源
扫码关注微信
郑州大学 化工学院,河南 郑州 450001
范志辉(1998—),硕士研究生,研究方向为催化反应动力学,E-mail:17856509754@163.com。
涂维峰(1986—),博士,教授,研究方向为CO2资源化高值利用,E-mail:weifengtu@zzu.edu.cn;
韩一帆(1968—),博士,教授,研究方向为工业催化剂动态构-效关系,E-mail:yifanhan@e.edu.cn。
纸质出版日期:2024-08-25,
收稿日期:2024-03-15,
修回日期:2024-04-21,
移动端阅览
范志辉,岳燕燕,张笑楠等.Ni/CeO2催化剂上CO2甲烷化反应本征动力学研究[J].低碳化学与化工,2024,49(08):123-130.
FAN Zhihui,YUE Yanyan,ZHANG Xiaonan,et al.Study on intrinsic kinetics of CO2 methanation on Ni/CeO2 catalyst[J].Low-carbon Chemistry and Chemical Engineering,2024,49(08):123-130.
范志辉,岳燕燕,张笑楠等.Ni/CeO2催化剂上CO2甲烷化反应本征动力学研究[J].低碳化学与化工,2024,49(08):123-130. DOI: 10.12434/j.issn.2097-2547.20240104.
FAN Zhihui,YUE Yanyan,ZHANG Xiaonan,et al.Study on intrinsic kinetics of CO2 methanation on Ni/CeO2 catalyst[J].Low-carbon Chemistry and Chemical Engineering,2024,49(08):123-130. DOI: 10.12434/j.issn.2097-2547.20240104.
CO
2
加氢合成CH
4
(CO
2
甲烷化)是CO
2
高效、清洁转化的重要途径之一。尽管CO
2
甲烷化的催化体系研究已较深入,但特定条件下CO
2
甲烷化本征动力学的研究较少。采用燃烧法制备了Ni/CeO
2
催化剂(Ni质量分数为10%),并通过加入内稀释剂(
α
-Al
2
O
3
)制备了不同
m
(
α
-Al
2
O
3
):
m
(Ni/CeO
2
)的样品。考察了在温度为300 ℃、压力为1 MPa和空速为3 × 10
6
mL/(g·h)的条件下,
m
(
α
-Al
2
O
3
):
m
(Ni/CeO
2
) = 25:1样品(样品A)的CO
2
甲烷化本征动力学。结合本征动力学测试、漫反射红外光谱、H
2
-程序升温还原和H
2
-程序升温脱附等对CO
2
甲烷化本征反应动力学方程进行了深入分析。结果表明,样品A作用下的CH
4
生成速率最高可达41.4 mmol/(g·h)(H
2
分压为400 kPa,CO
2
分压为120 kPa)。当CO
2
分压为30~120 kPa时,CH
4
生成速率随H
2
分压的增大线性增长,并且不受CO
2
分压或CO分压变化的影响。在该CO
2
分压范围内,富氢环境可以显著提高催化剂的CO
2
甲烷化催化活性。
Hydrogenation of CO
2
to synthesize CH
4
(CO
2
methanation) is one of the crucial pathways for the efficient and clean conversion of CO
2
. Despite extensive researches on the catalytic system for CO
2
methanation
the intrinsic kinetics of CO
2
methanation under specific conditions have not been thoroughly investigated. Ni/CeO
2
catalyst (Ni mass fraction of 10%) was prepared using the combustion method
and samples with varying
m
(
α
-Al
2
O
3
):
m
(Ni/CeO
2
) were produced by incorporating
α
-Al
2
O
3
as the internal diluent. The intrinsic kinetics of CO
2
methanation of sample A with
m
(
α
-Al
2
O
3
):
m
(Ni/CeO
2
) = 25:1 were examined
under the conditions of temperature of 300 ℃
pressure of 1 MPa and gas hourly space velocity of 3 × 10
6
mL/(g·h). An in-depth analysis of the kinetic equations for the intrinsic CO
2
methanation reaction was conducted through a combination of intrinsic kinetic tests
diffuse reflection infrared spectrum
H
2
-temperature programmed reaction and H
2
-temperature programmed desorption
etc. The results show that the CH
4
generation rate under action of sample A can reach up to 41.4 mmol/(g·h)(H
2
partial pressure is 400 kPa
and CO
2
partial pressure is 120 kPa). When CO
2
partial pressure is 30 kPa to 120 kPa
the CH
4
generation rate exhibits linear increases with the rises of the H
2
partial pressure
and is not affected by variation of the CO
2
or CO partial pressure. Within this CO
2
partial pressure range
the hydrogen-rich environment significantly enhances the catalytic activity of the catalyst for CO
2
methanation.
CO2甲烷化Ni/CeO2催化剂本征动力学
CO2 methanationNi/CeO2 catalystintrinsic dynamics
耿莉莉, 蔡运安, 徐桂婷, 等. 合成气甲烷化过程模拟与分析[J]. 天然气化工—C1化学与化工, 2019, 44(2): 72-79.
GEN L L, CAI Y A, XU G T, et al. Simulation and analysis of syngas methanation process [J]. Natural Gas Chemical Industry, 2019, 44(2): 72-79.
ZHANG Q W, XU R N, LIU N, et al. In situ Ce-doped catalyst derived from NiCeAl-LDHs with enhanced low-temperature performance for CO2 methanation [J]. Applied Surface Science, 2022, 579: 152204.
HU F Y, JIN C K, WU R D, et al. Enhancement of hollow Ni/CeO2-Co3O4 for CO2 methanation: From CO2 adsorption and activation by synergistic effects [J]. Chemical Engineering Journal, 2023, 461: 142108.
MA L X, YE R P, HUANG Y Y, et al. Enhanced low-temperature CO2 methanation performance of Ni/ZrO2 catalysts via a phase engineering strategy [J]. Chemical Engineering Journal, 2022, 446: 137031.
WEI Y L, JI J, LIANG F X, et al. Adjusting active sites and metal-support interactions of ceramic-loaded Pd/P-CeO2-Al2O3 coating to optimize CO2 methanation pathways [J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110773.
CHEN S L, ABDEL‐MAGEED A M, DYBALLA M, et al. Raising the COx methanation activity of a Ru/γ‐Al2O3 catalyst by activated modification of metal-support interactions [J]. Angewandte Chemie International Edition, 2020, 59(50): 22763-22770.
SOLIS-GARCIA A, ZEPEDA T A, FIERRO-GONZALEZ J C. Spectroscopic evidence of the simultaneous participation of rhodium carbonyls and surface formate species during the CO2 methanation catalyzed by ZrO2-supported Rh [J]. Applied Catalysis B: Environmental, 2022, 304: 120955.
MUROYAMA H, TSUDA Y, ASAKOSHI T, et al. Carbon dioxide methanation over Ni catalysts supported on various metal oxides [J]. Journal of Catalysis, 2016, 343: 178-184.
黄菊, 张志远, 魏宇学, 等. 层状双金属氢氧化物衍生催化剂在CO2加氢中应用的研究进展[J]. 低碳化学与化工, 2023, 48(2): 23-32.
HUANG J, ZHANG Z Y, WEI Y X, et al. Research progress in application of layered double hydroxide derived catalysts in CO2 hydrogenation [J]. Low-Carbon Chemistry and Chemical Engneering, 2023, 48(2): 23-32.
WANG H Y, YAO H D, PAN L Y, et al. Theoretical research the mechanism on the Ir/Ni (111) catalyst surface for CO2 methanation reaction [J]. Molecular Catalysis, 2023, 550: 113605.
ZHANG J C, YANG Y J, LIU J, et al. Mechanistic understanding of CO2 hydrogenation to methane over Ni/CeO2 catalyst [J]. Applied Surface Science, 2021, 558: 149866.
XU X L, TONG Y Y, HUANG J, et al. Insights into CO2 methanation mechanism on cubic ZrO2 supported Ni catalyst via a combination of experiments and DFT calculations [J]. Fuel, 2021, 283: 118867.
YANG Y J, LIU J, LIU F, et al. Reaction mechanism of CO2 methanation over Rh/TiO2 catalyst [J]. Fuel, 2020, 276: 118093.
JIA X Y, ZHANG X S, RUI N, et al. Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity [J]. Applied Catalysis B: Environmental, 2019, 244: 159-169.
TADA S, NAGASE H, FUJIWARA N, et al. What are the best active sites for CO2 methanation over Ni/CeO2? [J]. Energy & Fuels, 2021, 35(6): 5241-5251.
GOODARZI F, KANG L, WANG F R, et al. Methanation of carbon dioxide over zeolite-encapsulated nickel nanoparticles [J]. ChemCatChem, 2018, 10(7): 1566-1570.
SINGH U K, VANNICE M A. Kinetics of liquid-phase hydrogenation reactions over supported metal catalysts—A review [J]. Applied Catalysis A: General, 2001, 213(1): 1-24.
RIANI P, VALSAMAKIS I, CAVATTONI T, et al. Ni/SiO2-Al2O3 catalysts for CO2 methanation: Effect of La2O3 addition [J]. Applied Catalysis B: Environmental, 2021, 284: 119697.
LACHKOV P T, CHIN Y H. Influence of carbon and oxygen chemical potentials on the hydrogen donor identity during methanation on Ni, Co, and Ni-Co clusters [J]. ChemCatChem, 2018, 11(4): 1244-1255.
QUINDIMIL A, BACARIZA M C, GONZÁLEZ-MARCOS J A, et al. Enhancing the CO2 methanation activity of γ-Al2O3 supported mono- and bi-metallic catalysts prepared by glycerol assisted impregnation [J]. Applied Catalysis B: Environmental, 2021, 296: 120322.
CUI W G, ZHUANG X Y, LI Y T, et al. Engineering Co/MnO heterointerface inside porous graphitic carbon for boosting the low-temperature CO2 methanation [J]. Applied Catalysis B: Environmental, 2021, 287: 119959.
CÁRDENAS-ARENAS A, QUINDIMIL A, DAVÓ-QUIÑONERO A, et al. Isotopic and in situ DRIFTS study of the CO2 methanation mechanism using Ni/CeO2 and Ni/Al2O3 catalysts [J]. Applied Catalysis B: Environmental, 2020, 265: 118538.
HONGMANOROM P, ASHOK J, CHIRAWATKUL P, et al. Interfacial synergistic catalysis over Ni nanoparticles encapsulated in mesoporous ceria for CO2 methanation [J]. Applied Catalysis B: Environmental, 2021, 297: 120454.
FALBO L, VISCONTI C G, LIETTI L, et al. The effect of CO on CO2 methanation over Ru/Al2O3 catalysts: A combined steady-state reactivity and transient DRIFT spectroscopy study [J]. Applied Catalysis B: Environmental, 2019, 256: 117791.
ZHOU G L, LIU H R, CUI K K, et al. Role of surface Ni and Ce species of Ni/CeO2 catalyst in CO2 methanation [J]. Applied Surface Science, 2016, 383: 248-252.
CÁRDENAS-ARENAS A, QUINDIMIL A, DAVÓ-QUIÑONERO A, et al. Design of active sites in Ni/CeO2 catalysts for the methanation of CO2: Tailoring the Ni-CeO2 contact [J]. Applied Materials Today, 2020, 19: 100591.
ONRUBIA-CALVO J A, QUINDIMIL A, DAVÓ-QUIÑONERO A, et al. Kinetics, model discrimination, and parameters estimation of CO2 methanation on highly active Ni/CeO2 catalyst [J]. Industrial & Engineering Chemistry Research, 2022, 61(29): 10419-10435.
AHMAD K N, ISAHAK W N R, ROSLI M I, et al. Rare earth metal doped nickel catalysts supported on exfoliated graphitic carbon nitride for highly selective CO and CO2 methanation [J]. Applied Surface Science, 2022, 571: 151321.
ZHOU J Y, MA H F, LIU C X, et al. Ni based catalysts supported on Ce modified mgal spinel supports for high temperature syngas methanation [J]. Catalysis Letters, 2019, 149(9): 2563-2574.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构