浏览全部资源
扫码关注微信
1.厦门固洛潽能源科技有限公司,福建 厦门 361003
2.鲁西化工集团股份有限公司,山东 聊城 252211
3.厦门大学 能源学院,福建 厦门 363102
党志东(1985—),本科,高级工程师,研究方向为氢能及太阳能,E-mail:zd_dang@126.com。
孙毅飞(1987—),博士,副教授,研究方向为氢能,E-mail:yfsun@xmu.edu.cn。
纸质出版日期:2024-09-25,
收稿日期:2024-03-14,
修回日期:2024-04-11,
移动端阅览
党志东,李洪旭,吕新春等.基于甲酸的储制氢技术现状与发展趋势[J].低碳化学与化工,2024,49(09):88-96.
DANG Zhidong,LI Hongxu,LV Xinchun,et al.Status and development trends of hydrogen storage and production technology based on formic acid[J].Low-carbon Chemistry and Chemical Engineering,2024,49(09):88-96.
党志东,李洪旭,吕新春等.基于甲酸的储制氢技术现状与发展趋势[J].低碳化学与化工,2024,49(09):88-96. DOI: 10.12434/j.issn.2097-2547.20240102.
DANG Zhidong,LI Hongxu,LV Xinchun,et al.Status and development trends of hydrogen storage and production technology based on formic acid[J].Low-carbon Chemistry and Chemical Engineering,2024,49(09):88-96. DOI: 10.12434/j.issn.2097-2547.20240102.
甲酸具有高达53 g/L的体积储氢量,毒性和可燃性相对较低,便于储存及运输,是一种颇具应用前景的氢能载体。以甲酸作为储氢介质,可有效避免氢气液化和压缩等繁琐过程,从而实现氢能的高效利用。阐述了甲酸制氢原理,综述了该领域催化剂研究的最新进展,包括负载型异相催化剂体系,以及贵金属、非贵金属均相催化剂体系。总结了撬装式甲酸制氢系统、撬装式甲酸制氢-燃料电池发电系统的发展现状,讨论了其潜在的应用方向,并对基于绿色甲酸制氢的零碳循环进行了展望。
Formic acid
with a volumetric hydrogen storage capacity of up to 53 g/L
has relatively low toxicity and flammability
making it convenient for storage and transportation
so it is a promising hydrogen carrier for practical applications. Utilizing formic acid as a hydrogen storage medium can effectively avoid the cumbersome processes of hydrogen liquefaction and compression
thereby achieving efficient utilization of hydrogen energy. The principles of hydrogen production from formic acid were elucidated and the latest research advancements of catalysts in this field were reviewed
including supported heterogeneous catalyst systems and homogeneous catalyst systems comprising precious and non-precious metals. The current development status of skid-mounted formic acid hydrogen production systems and skid-mounted formic acid hydrogen production-fuel cell power generation systems were summarized. Their potential application directions were discussed
and a concept of zero-carbon cycle based on green formic acid hydrogen production was proposed.
甲酸制氢催化剂撬装式制氢撬装式发电绿色甲酸
formic acid hydrogen productioncatalystskid-mounted hydrogen productionskid-mounted power generationgreen formic acid
GHORBANI B, ZENDEHBOUDI S, MONAJATI SAHARKHIZ M H, et al. Multi-objective optimization of a novel hybrid structure for co-generation of ammonium bicarbonate, formic acid, and methanol with net-zero carbon emissions [J]. Energy & Fuels, 2023, 37(16): 12474-12502.
KANNAH R, KAVITHA S, KARTHIKEYAN O P, et al. Techno-economic assessment of various hydrogen production methods—A review [J]. Bioresource Technology, 2021, 319: 124175.
中研普华产业研究院. 2023—2028年中国甲酸市场深度全景调研及投资前景分析报告[R/OL]. (2023-08-15)[2024-03-11]. https://www.chinairn.com/report/20230815/094338992.htmlhttps://www.chinairn.com/report/20230815/094338992.html.
Zhongyan Puhua Industry Research Institute. 2023—2028 China formic acid market in-depth panoramic survey and investment prospect analysis report [R/OL]. (2023-08-15)[2024-03-11]. https://www.chinairn.com/report/20230815/094338992.htmlhttps://www.chinairn.com/report/20230815/094338992.html.
邵志刚, 衣宝廉. 氢能与燃料电池发展现状及展望[J]. 中国科学院院刊, 2019, 34(4): 469-477.
SHAO Z G, YI B L. Development status and prospect of hydrogen energy and fuel cells [J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 469-477.
ERTL G, KNOZINGER H, WEITKAMP J. Handbook of heterogeneous catalysis [M]. Weinheim: VCH, 1997.
LINTULUOTO M, NAKATSUJI H, HADA M, et al. Theoretical study of the decomposition of HCOOH on an MgO(100) surface [J]. Surface Science, 1999, 429(1/2/3): 133-142.
HUANG Y J, ZHOU X C, YIN M, et al. Novel PdAu@Au/C core-shell catalyst: Superior activity and selectivity in formic acid decomposition for hydrogen generation [J]. Chemistry of Materials, 2010, 22(18): 5122-5128.
ZHAO Y, DENG L, TANG S Y, et al. Selective decomposition of formic acid over immobilized catalysts [J]. Energy Fuels, 2011, 25(8): 3693-3697.
BI Q Y, DU X L, LIU Y M, et al. Efficient subnanometric gold-catalyzed hydrogen generation via formic acid decomposition under ambient conditions [J]. Journal of the American Chemical Society, 2012, 134(21): 8926-8933.
WILLIAMS R, CRANDALL R, BLOOM A. Use of carbon dioxide in energy storage [J]. Applied Physics Letters, 1978, 33(5): 381-383.
HU C Q, TING S W, TSUI J K, et al. Formic acid dehydrogenation over PtRuBiOx/C catalyst for generation of CO-free hydrogen in a continuous-flow reactor [J]. International Journal of Hydrogen Energy, 2012, 37(8): 6372-6380.
WANG Z L, YAN J M., PING Y. et al. An efficient CoAuPd/C catalyst for hydrogen generation from formic acid at room temperature [J]. Angewandte Chemie International Edition, 2013, 16(52): 4406-4409.
ZOU W H, LIU Y C, SONG C C, et al. In situ reduction of PdO encapsulated in MCM-41 to Pd(0) for dehydrogenation of formic acid [J]. International Journal of Hydrogen Energy, 2022, 47(66): 28518-28529.
WANG J Y, SHANG H N, LIU D L, et al. Nitrogen-phosphorus co-functionalized reduced graphene oxide supported NiCoPd-CeOx nanoparticles as a highly efficient and stable catalyst for formic acid dehydrogenation [J]. International Journal of Hydrogen Energy, 2022, 47(20): 10891-10901.
ZACHARSKA M, CHUVILIN A, KRIVENTSOV V, et al. A support effect for nanosized Au catalysts in hydrogen production from formic acid decomposition [J]. Catalysis Science Technology, 2016, 6(18): 6853-6860.
BODDIEN A, LOGES B, GÄRTNER F, et al. Iron-catalyzed hydrogen production from formic acid [J]. Journal of the American Chemical Society, 2010, 132(26): 8924-8934.
BODDIEN A, GÄRTNER F, JACKSTELL R, et al. ortho‐metalation of iron(0) tribenzylphosphine complexes: Homogeneous catalysts for the generation of hydrogen from formic acid [J]. Angewandte Chemie International Edition, 2010, 49(47): 8993-8996.
BERTINI F, MELLONE I, IENCO A, et al. Iron(II) complexes of the linear rac-tetraphos-1 ligand as efficient homogeneous catalysts for sodium bicarbonate hydrogenation and formic acid dehydrogenation [J]. ACS Catalysis, 2015, 5(2): 1254-1265.
ZELL T, BUTSCHKE B, BEN-DAVID Y, et al. Efficient hydrogen liberation from formic acid catalyzed by a well-defined iron pincer complex under mild conditions [J]. Chemistry—A European Journal, 2013, 19(25): 8068-8072.
WEI D, SANG R, SPONHOLZ P, et al. Reversible hydrogenation of carbon dioxide to formic acid using a Mn-pincer complex in the presence of lysine [J]. Nature Energy, 2022, 7(5): 438-447.
COFFEY R S. The decomposition of formic acid catalysed by soluble metal complexes [J]. Chemical Communications, 1967, (18): 923-924.
FUKUZUMI S, KOBAYASHI T, SUENOBU T. Efficient catalytic decomposition of formic acid for the selective generation of H2 and H/D exchange with a water-soluble rhodium complex in aqueous solution [J]. ChemSusChem: Chemistry Sustainability Energy Materials, 2008, 1(10): 827-834.
WANG Z J, LU S M, WU J J, et al. Iodide-promoted dehydrogenation of formic acid on a rhodium complex [J]. European Journal of Inorganic Chemistry, 2016, 16(4): 490-496.
TANAKA R, YAMASHITA M, CHUNG L, et al. Mechanistic studies on the reversible hydrogenation of carbon dioxide catalyzed by an Ir-PNP complex [J]. Organometallics, 2011, 30(24): 6742-6750.
LU S M, WANG Z J, WANG J J, et al. Hydrogen generation from formic acid decomposition on a highly efficient iridium catalyst bearing a diaminoglyoxime ligand [J]. Green Chemistry, 2018, 20(8): 1835-1840.
KANEGA R, ERTEM M, ONISHI N, et al. CO2 hydrogenation and formic acid dehydrogenationusing Ir catalysts with amide-based ligands [J]. Organometallics, 2020, 39(9): 1519-1531.
MAJI B, KUMAR A, BHATTACHERYA A, et al. Cyclic amide-anchored NHC-based Cp*Ir catalysts for bidirectional hydrogenation-dehydrogenation with CO2/HCO2H couple [J]. Organometallics, 2022, 41: 3589-3599.
FILONENKO G A, VAN PUTTEN R, SCHULPEN E N, et al. Highly efficient reversible hydrogenation of carbon dioxide to formates using a ruthenium PNP-pincer catalyst [J]. ChemCatChem, 2014, 6(6): 1526-1530.
PAN Y P, PAN C L, ZHANG Y F,et al. Selective hydrogen generation from formic acid with well‐defined complexes of ruthenium and phosphorus-nitrogen PN3-pincer ligand [J]. Chemistry—An Asian Journal, 2016, 11(9): 1357-1360.
FELLAY C, DYSON P, LAURENCZY G. A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst [J]. Angewandte Chemie International Edition, 2008, 47(21): 3966-3968.
观研报告网. 中国氢能源行业发展深度研究与投资前景分析报告(2023—2030年)[R/OL]. (2023-06-01)[2024-03-11]. https://www.chinabaogao.com/baogao/202306/636305.htmlhttps://www.chinabaogao.com/baogao/202306/636305.html.
Observation and Research Report Network. In-depth research and investment prospect analysis report on the development of China’s hydrogen energy industry (2023-2030) [R/OL]. (2023-06-01)[2024-03-11]. https://www.chinabaogao.com/baogao/202306/636305.htmlhttps://www.chinabaogao.com/baogao/202306/636305.html.
丁宁, 陈千惠, 刘丹禾, 等. 制储氢技术经济性分析与前景展望[J]. 洁净煤技术, 2023, 29(10): 126-144.
DING N, CHEN Q H, LIU D H, et al. Economic analysis and prospect of hydrogen production and storage technology [J]. Clean Coal Technology, 2023, 29(10): 126-144.
凌文, 刘玮, 李育磊, 等,中国氢能基础设施产业发展战略研究[J]. 中国工程科学, 2019, 21(3): 76-83.
LING W, LIU W, LI Y L, et al. Research on the development strategy of China’s hydrogen energy infrastructure industry [J]. Engineering Science, 2019, 21(3): 76-83.
EPPINGER J, HUANG K W. Formic acid as a hydrogen energy carrier [J]. ACS Energy Letter, 2017, 2(1): 188-195.
新华社. 瑞士研发出全球首个基于甲酸的燃料电池[J]. 云南电力技术, 2018, 46(3): 5.
Xinhua News Agency. Switzerland develops the world’s first formic acid-based fuel cell [J]. Yunnan Electric Power Technology, 2018, 46(3): 5.
ZHAI S L, JIANG S C, LIU C C, et al. Liquid sunshine: Formic acid [J]. Journal of Physical Chemistry Letters, 2022, 13(36): 8586-8600.
IGUCHI M, HIMEDA Y, MANAKA Y, et al. Simple continuous high-pressure hydrogen production and separation system from formic acid under mild temperatures [J]. ChemCatChem, 2016, 8(5): 886-890.
VON DER ASSEN N, VOLL P, PETERS M, et al. Life cycle assessment of CO2 capture and utilization: A tutorial review [J]. Chemical Society Reviews, 2014, 43(23): 7982-7994.
ALDACO R, BUTNAR I, MARGALLO M. Bringing value to the chemical industry from capture, storage and use of CO2: A dynamic LCA of formic acid production [J]. Science of the Total Environment, 2019, 663: 738-753.
LI Q F, HE R H, JENSEN J. Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 ℃ [J]. Chemistry of Materials, 2003, 15(26): 4896-4915.
RUBIN E S, DAVISON J E, HERZOG H J. The cost of CO2 capture and storage [J]. International Journal of Greenhouse Gas Control, 2015, 40: 378-400.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构