浏览全部资源
扫码关注微信
太原理工大学 化学与化工学院 省部共建煤基能源清洁高效利用国家重点实验室,山西 太原 030024
高梦迪(1998—),硕士研究生,研究方向为碳一化学与多相催化,E-mail:1797755740@qq.com。
黄伟(1962—),博士,教授,研究方向为碳一化学与多相催化,E-mail:huangwei@tyut.edu.cn。
纸质出版日期:2024-08-25,
收稿日期:2024-03-12,
修回日期:2024-04-28,
移动端阅览
高梦迪,武璐瑶,郝家荣等.Al组分含量对CuZnAl催化剂CO加氢制乙醇和高级醇性能影响[J].低碳化学与化工,2024,49(08):28-37.
GAO Mengdi,WU Luyao,HAO Jiarong,et al.Effects of Al component contents on performances of CuZnAl catalysts for CO hydrogenation to ethanol and higher alcohols[J].Low-carbon Chemistry and Chemical Engineering,2024,49(08):28-37.
高梦迪,武璐瑶,郝家荣等.Al组分含量对CuZnAl催化剂CO加氢制乙醇和高级醇性能影响[J].低碳化学与化工,2024,49(08):28-37. DOI: 10.12434/j.issn.2097-2547.20240101.
GAO Mengdi,WU Luyao,HAO Jiarong,et al.Effects of Al component contents on performances of CuZnAl catalysts for CO hydrogenation to ethanol and higher alcohols[J].Low-carbon Chemistry and Chemical Engineering,2024,49(08):28-37. DOI: 10.12434/j.issn.2097-2547.20240101.
随着原油储量的减少和环境问题的加剧,迫切需要寻找生产燃料和化学品的新技术。Cu基催化剂是合成气直接制乙醇和高级醇(C
2+
醇)的重要催化剂之一,但存在目标产物选择性低的问题。采用完全液相法制备了一系列不同Al组分含量(
n
(Al)/
n
(Zn)计)的CuZnAl催化剂(Cat-Al
x
),结合X射线衍射、N
2
吸/脱附和H
2
-程序升温还原等对催化剂的物相组成、织构性质和还原性能等进行了表征。在模拟浆态床反应器中研究了Cat-Al
x
对CO加氢制乙醇和C
2+
醇反应的催化性能。结果表明,Cat-Al0.8表面具有最丰富的Cu
+
物种以及较多的氧空位,表现出相对最优的催化性能。在280 ℃、4 MPa和
V
(H
2
)/
V
(CO) = 2/1的条件下反应24 h,Cat-Al0.8的CO转化率为18.45%,总醇选择性为30.34%,乙醇在总醇中的占比为30.19%,C
2+
醇在总醇中的占比为48.08%。
With the decrease of crude oil reserves and the aggravation of environmental problems
it is urgent to find new technologies for producing fuels and chemicals. Cu-based catalyst is one of the important catalysts for the direct synthesis of ethanol and higher alcohols (C
2+
alcohols) from syngas
but it has the problem of low selectivity for target products. A series of CuZnAl catalysts (Cat-Al
x
) with different Al component contents (
n
(Al)/
n
(Zn)) were prepared b
y the complete liquid-phase method. The phase compositions
texture properties and reduction properties of the catalysts were characterized by X-ray diffraction
N
2
adsorption/desorption and H
2
-programmed temperature reduction
etc. The catalytic performances of Cat-Al
x
for CO hydrogenation to ethanol and C
2+
alcohols were studied in a simulated slurry bed reactor. The results show that Cat-Al0.8 has the most abundant Cu
+
species and more oxygen vacancies on its surface
showing relatively optimal catalytic performance. Reaction under the conditions of 280 ℃
4 MPa and
V
(H
2
)/
V
(CO) = 2/1 for 24 h
the CO conversion rate of Cat-Al0.8 is 18.45%
and the total alcohols selectivity is 30.34%
and the proportion of ethanol in the total alcohols is 30.19%
and the proportion of C
2+
alcohols in the total alcohols is 48.08%.
Al组分含量CuZnAl催化剂完全液相法乙醇高级醇
Al component contentsCuZnAl catalystscomplete liquid-phase methodethanolhigher alcohols
LIU G B, YANG G H, PENG X B, et al. Recent advances in the routes and catalysts for ethanol synthesis from syngas [J]. Chemical Society Reviews, 2022, 51(13): 5606-5659.
WANG J C, LIU Z X, ZHANG R G, et al. Ethanol synthesis from syngas on the stepped Rh(211) surface: Effect of surface structure and composition [J]. The Journal of Physical Chemistry C, 2014, 118(39): 22691-22701.
FENG W, WANG Q W, JIANG B, et al. Carbon nanotubes coated on silica gels as a support of Cu-Co catalyst for the synthesis of higher alcohols from syngas [J]. Industrial & Engineering Chemistry Research, 2011, 50(19): 11067-11072.
YANG Q L, CAO A, KANG N, et al. Bimetallic nano Cu-Co based catalyst for direct ethanol synthesis from syngas and its structure variation with reaction time in slurry reactor [J]. Industrial & Engineering Chemistry Research, 2017, 56(11): 2889-2898.
HAIDER M A, GOGATE M R, DAVIS R J. Fe-promotion of supported Rh catalysts for direct conversion of syngas to ethanol [J]. Journal of Catalysis, 2009, 261(1): 9-16.
CHEN T Y, SU J J, ZHANG Z P, et al. Structure evolution of Co-CoOx interface for higher alcohol synthesis from syngas over Co/CeO2 catalysts [J]. ACS Catalysis, 2018, 8(9): 8606-8617.
HASTY J K, PONNURANGAM S, TURN S, et al. Catalytic synthesis of mixed alcohols mediated with nano-MoS2 microemulsions [J]. Fuel, 2016, 164: 339-346.
REN H W, LIU J, ZHENG Y, et al. CO hydrogenation to ethanol over CuZnAl composite catalysts with the addition of carbon nanotubes [J]. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135(4): 1755-1766.
HUANG W, YU L M, LI W H, et al. Synthesis of methanol and ethanol over CuZnAl slurry catalyst prepared by complete liquid-phase technology [J]. Frontiers of Chemical Engineering in China, 2010, 4(4): 472-475.
SHI L S, YAN P Q, GAO Z H, et al. Effect of copper source on the structure-activity of CuAl2O4 spinel catalysts for CO hydrogenation [J]. Arabian Journal of Chemistry, 2023, 16(2): 104464.
HONG Z, WANG J R, GAO Z H, et al. Tuning CuO crystallite size by different solvents for higher alcohols synthesis from syngas over CuZnAl catalyst [J]. International Journal of Hydrogen Energy, 2024, 56: 1032-1037.
JIA P L, LIU Y J, YANG R, et al. Insight into the structural sensitivity of CuZnAl catalysts for CO hydrogenation to alcohols [J]. Fuel, 2022, 323: 124265.
LIU H, AN J, CHEN T, et al. Low temperature conversion of syngas to ethanol in liquid phase over Fe modified CuZn catalyst: The promoting effect of Fe [J]. Journal of the Energy Institute, 2019, 92(6): 1736-1742.
BAI B, BAI H, ZHANG L, et al. Catalytic activity of γ-AlOOH (001) surface in syngas conversion: Probing into the mechanism of carbon chain growth [J]. Applied Surface Science, 2018, 455: 123-131.
LI F, ZHANG Q, LIU J, et al. Electron promoted ZnO for catalytic synthesis of higher alcohols from syngas [J]. Green Energy & Environment, 2022, 7(6): 1390-1400.
GONG J, LIU J, WANG S, et al. Effects of Mn, Zr and Ni promoters on the performance of CuZnO catalyst for ethanol synthesis via CO hydrogenation [J]. ChemistrySelect, 2022, 7(19): e202200311.
李超, 陈永恩, 黄伟, 等. 不同 Cu 源与 Zn 源对 CuZnAl 催化剂催化合成气制乙醇性能的影响[J]. 燃料化学学报, 2015, 43(7): 852-856.
LI C, CHEN Y E, HUANG W, et al. Effect of the source of Cu and Zn on the ethanol synthesis from syngas over CuZnAl catalyst [J]. Journal of Fuel Chemistry and Technology, 2015, 43(7): 852-856.
HUANG J H, BAI K Y, GAO M D, et al. Influence of the precursors in CuZnAl slurry catalyst preparation by the complete liquid phase for the ethanol synthesis from syngas [J]. International Journal of Hydrogen Energy, 2023, 48(87): 33850-33863.
LIU Y J, LIU C H, LI C, et al. CO hydrogenation to higher alcohols over Cu/Zn/Al catalysts without alkalis or Fischer-Tropsch elements: The effect of triethanolamine content [J]. Catalysis Communications, 2016, 76: 29-32.
SUN K, BIAN Z K, CHENG S Y, et al. Effect of Si content on the performance of direct synthesis of dimethyl ether over slurry CuZnAl catalyst prepared by complete liquid phase technology [J]. Journal of Fuel Chemistry and Technology, 2021, 49(6): 791-798.
刘雷强, 边仲凯, 顾尹婷, 等. 分步添加AlOOH溶胶对Cu/Zn/Al催化剂催化合成气制乙醇的影响[J]. 天然气化工—C1化学与化工, 2019, 44(6): 34-40.
LIU L Q, BIAN Z K, GU Y T, et al. Effect of two steps addition of AlOOH on CuZnAl catalysts for the synthesis of ethanol from syngas [J]. Natural Gas Chemical Industry, 2019, 44(6): 34-40.
DENG X, LIU Y J, HUANG W. Higher alcohols synthesis from syngas over lanthanum-promoted CuZnAl catalyst [J]. Journal of Energy Chemistry, 2018, 27(1): 319-325.
LIU Y J, DENG X, JIA L, et al. Investigation of copper precursors in the synthesis of higher alcohols from syngas over CuZnAl catalysts without promoters [J]. Physical Chemistry Chemical Physics, 2018, 20(27): 18790-18799.
GONG J, LIU J, YANG D H, et al. Cu-Zn synergy for CO hydrogenation to ethanol and methanol on CuZnO catalysts [J]. Catalysis Letters, 2021, 152(7): 2101-2109.
TURCO M, BAGNASCO G, COSTANTINO U, et al. Production of hydrogen from oxidative steam reforming of methanol: I. Preparation and characterization of Cu/ZnO/Al2O3 catalysts from a hydrotalcite-like LDH precursor [J]. Journal of Catalysis, 2004, 228(1): 43-55.
ZHENG X L, LIN H Q, ZHENG J W, et al. Lanthanum oxide-modified Cu/SiO2 as a high-performance catalyst for chemoselective hydrogenation of dimethyl oxalate to ethylene glycol [J]. ACS Catalysis, 2013, 3(12): 2738-2749.
TIAN J X, HU J, SHAN W J, et al. Cu9-Alx-Mgy catalysts for hydrogenation of ethyl acetate to ethanol [J]. Applied Catalysis A: General, 2017, 544: 108-115.
CUI N, LIU Y J, JIA P L, et al. Investigation of alkaline complexant on ethanol synthesis from syngas over slurry CuZnAlOOH catalyst [J]. International Journal of Hydrogen Energy, 2021, 46(42): 21889-21900.
LIU J, FAN J C, LI F, et al. A study on the binary and ternary CuZnAl catalysts without additives for efficient CO hydrogenation to ethanol [J]. ChemCatChem, 2022, 14(8): e202101848.
TIAN M, TIAN X, MA E J, et al. Oxygen vacancy control of catalytic activity of Cu/ZnO for higher alcohols synthesis via incorporating Ga [J]. ACS Sustainable Chemistry & Engineering, 2023, 11(37): 13616-13627.
LIU Y J, CUI N, JIA P L, et al. Synergy between active sites of ternary CuZnAlOOH catalysts in CO hydrogenation to ethanol and higher alcohols [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(17): 6634-6646.
YANG J Q, GONG N N, WANG L Y, et al. Effect of La2O3-decorated SiO2 on the performance of CuCo catalyst for direct conversion of syngas to ethanol [J]. Fuel, 2022, 319: 123811.
GU Y T, HAN C, HUANG J H, et al. CuZnAlOOH catalysts with Cu0/Cu+ constructed by two-step hydrolysis for ethanol production from syngas [J]. Fuel, 2022, 322: 124111.
LIU J, JIA Y Z, WANG S, et al. Effect of ZnO morphology on the performance of CuZnAl slurry catalysts for the ethanol synthesis from syngas [J]. Fuel Processing Technology, 2022, 238: 107510.
WANG J R, GAO Z H, YAN P Q, et al. The effect of CuO crystallite size on the structure and performance of CuZnAl catalyst for mixed alcohols synthesis from syngas [J]. Journal of Physics and Chemistry of Solids, 2022, 170: 110883.
SMITH M L, KUMAR N, SPIVEY J J. CO adsorption behavior of Cu/SiO2, Co/SiO2, and CuCo/SiO2 catalysts studied by in situ DRIFTS [J]. The Journal of Physical Chemistry C, 2012, 116(14): 7931-7939.
LIU Y J, LI Z W, LUO P, et al. Size-dependent and sensitivity of copper particle in ternary CuZnAl catalyst for syngas to ethanol [J]. Applied Catalysis B: Environmental, 2023, 336: 122949.
QIAN W X, WANG H, XU Y B, et al. In situ DRIFTS study of homologous reaction of methanol and higher alcohols synthesis over Mn promoted Cu-Fe catalysts [J]. Industrial & Engineering Chemistry Research, 2019, 58(16): 6288-6297.
ZUO Z J, WANG L, YU L M, et al. Experimental and theoretical studies of ethanol synthesis from syngas over CuZnAl catalysts without other promoters [J]. The Journal of Physical Chemistry C, 2014, 118(24): 12890-12898.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构