浏览全部资源
扫码关注微信
1.中国科学院 大连化学物理研究所,辽宁 大连 116023
2.中国科学院大学,北京 100049
于宝一(1999—),硕士研究生,研究方向为材料与化工,E-mail:yubaoyi@dicp.ac.cn。
王亚男(1991—),博士,助理研究员,研究方向为工业催化,E-mail:wangyn@dicp.ac.cn;
徐龙伢(1964—),博士,研究员,研究方向为工业催化,E-mail:lyxu@dicp.ac.cn。
纸质出版日期:2024-11-25,
收稿日期:2024-03-10,
修回日期:2024-03-26,
移动端阅览
于宝一,王亚男,谢素娟等.不同分子筛催化乙苯与异丁烯液相烷基化反应制对叔丁基乙苯性能[J].低碳化学与化工,2024,49(11):36-42.
YU Baoyi,WANG Ya’nan,XIE Sujuan,et al.Performances of differen zeolites catalyzed liquid-phase alkylation of ethylbenzene and isobutylene to p-tert-butylethylbenzene[J].Low-carbon Chemistry and Chemical Engineering,2024,49(11):36-42.
于宝一,王亚男,谢素娟等.不同分子筛催化乙苯与异丁烯液相烷基化反应制对叔丁基乙苯性能[J].低碳化学与化工,2024,49(11):36-42. DOI: 10.12434/j.issn.2097-2547.20240099.
YU Baoyi,WANG Ya’nan,XIE Sujuan,et al.Performances of differen zeolites catalyzed liquid-phase alkylation of ethylbenzene and isobutylene to p-tert-butylethylbenzene[J].Low-carbon Chemistry and Chemical Engineering,2024,49(11):36-42. DOI: 10.12434/j.issn.2097-2547.20240099.
关键化学品对叔丁基乙苯(
p
-TBEB)在工程塑料、高铁航空和电子信息等领域有广阔的应用前景。目前烷基化生产
p
-TBEB过程存在原料受限、催化剂失活快等弊端,同时也缺乏针对不同构型分子筛用于制备
p
-TBEB性能的系统研究。分别选取具有BEA、FAU、MOR、MWW和MTW拓扑结构的HBeta、HUSY、HMOR、HMCM-22和HZSM-12氢分子筛,采用XRD、SEM、NH
3
-TPD和N
2
物理吸/脱附对分子筛的结构和性质等进行了表征。结果表明,所选取的分子筛皆为纯相分子筛,具有各自典型的形貌和酸分布。在反应温度为200 ℃、反应压力为2.5 MPa、乙苯与异丁烯进料物质的量之比为4.0和异丁烯质量空速为1.0 h
-1
的反应条件下,系统研究了不同拓扑结构分子筛用于乙苯与异丁烯液相烷基化制备
p
-TBEB的催化性能。结果表明,酸量与分子筛的反应活性和目标产物选择性的关联度不高,孔道结构是影响其烷基化性能的关键因素。和其他几种分子筛相比,具有一维十二元环孔道的HZSM-12氢分子筛不仅能维持较高的乙苯转化率(≈ 20%),还具有高目标产物选择性,是最优的乙苯与异丁烯反应制
p
-TBEB的分子筛催化材料。
Key chemical
p
-
tert
-butylethylbenzene (
p
-TBEB) has broad application prospects in engineering plastics
high-speed rail aviation
electronic information and so on. At present
the process of producing
p
-TBEB through alkylation has drawbacks
such as limited raw materials and rapid catalyst deactivation. There is also a lack of systematic research on the performance of different molecular sieves with different configurations for the preparation of
p
-TBEB. HBeta
HUSY
HMOR
HMCM-22 and HZSM-12 hydrogen molecular sieves with BEA
FAU
MOR
MWW and MTW topological structures were selected
and their structures and properties were characterized by XRD
SEM
NH
3
-TPD and N
2
physical adsorption/desorption. The results show that the selected molecular sieves are all pure phase molecular sieves with typical morphology and acid distribution. The catalytic performances of different topological structure molecular sieves for the liquid-phase alkylation of ethylbenzene and isobutylene to prepare
p
-TBEB was systematically studied under the reaction conditions of reaction temperature of 200 ℃
reaction pressure of 2.5 MPa
molar ratio of ethylbenzene to isobutylene feedstock of 4.0 and isobutylene mass space velocity of 1.0 h
-1
. The results show that the acid amount has a low correlation with the reaction activity and target product selectivity of the molecular sieve
and the pore structure is the key factor affecting its alkylation performance. Compared with several other molecular sieves
the HZSM-12 hydrogen molecular sieve with one-dimensional twelve-membered ring pores not only maintains a high ethylbenzene conversion rate (about 20%)
but also has high target product selectivity
making it the most preferred molecular sieve catalytic material for the reaction of ethylbenzene and isobutylene to prepare
p
-TBEB.
分子筛乙苯异丁烯烷基化对叔丁基乙苯
zeolitesethylbenzeneisobutenealkylationp-tert-butylethylbenzene
DROBNY J G. Handbook of thermoplastic elastomers [M]. Amsterdam: Elsevier, 2014.
武元鹏, 杨浩, 朱尚国, 等. 4-叔丁基苯乙烯和甲基丙烯酸甲酯共聚物磁性吸油树脂[J]. 高分子学报, 2016, 26(11): 1599-1605.
WU Y P, YANG H, ZHU S G, et al. Magnetic responsive oil-absorbing polymeric resins based on 4-tert-butyl-styrene and methyl methacrylate [J]. Acta Polymerica Sinica, 2016, 26(11): 1599-1605.
刘艳萍, 吴波, 周美华. 4-叔丁基苯乙烯/三元乙丙橡胶悬浮共聚树脂的制备及表征[J]. 化工新型材料, 2007, 35(6): 32-33+48.
LIU Y P, WU B, ZHOU M H. Synthesis and characterizations of tBS/EPDM suspension copolymer [J]. New Chemical Materials, 2007, 35(6): 32-33+48.
杨帅, 龚林林, 古卓玮, 等. 苯乙烯-对叔丁基苯乙烯-间戊二烯三元共聚物制备及表征[J]. 高分子通报, 2023, 36(1): 99-111.
YANG S, GONG L L, GU Z W, et al. The synthesis and characteristic of poly(styrene-co-p-tbutyl-styrene-co-pentadiene) terpolymer [J]. Polymer Bulletin, 2023, 36(1): 99-111.
许涌深, 李红兵, 孙经武. 一种新型单体-对叔丁基苯乙烯的开发与应用[J]. 化工进展, 2000, 19(2): 35-37.
XU Y S, LI H B, SUN J W. Development and application of a new monomer-p-tert-butylstyrene [J]. Chemical Industry and Engineering Progress, 2000, 19(2): 35-37.
于吉红, 闫文付. 纳米孔材料化学: 催化及功能化[M]. 北京: 科学出版社, 2013.
YU J H, YAN W F. Chemistry of nanoporous materials: Catalysis and functionalization [M]. Beijing: Science Press, 2013.
BUCHANAN J S. The chemistry of olefins production by ZSM-5 addition to catalytic cracking units [J].Catalysis Today, 2000, 55(3): 207-212.
LAHA S C, KUMAR R. Highly selective epoxidation of olefinic compounds over TS-1 and TS-2 redox molecular sieves using anhydrous urea-hydrogen peroxide as oxidizing agent [J]. Journal of Catalysis, 2002, 208(2): 339-344.
LIU X W, WANG X S, GUO X W, et al. Effect of solvent on the propylene epoxidation over TS-1 catalyst [J]. Catalysis Today, 2004, 93/95: 505-509.
TAYLOR B, LAUTERBACH J, DELGASS W. Gas-phase epoxidation of propylene over small gold ensembles on TS-1 [J]. Applied Catalysis A: General, 2005, 291(1/2): 188-198.
HUANG H, RONG W, GU Y, et al. Adsorption and desorption of VOCs on the ZSM-5 zeolite [J]. Acta Scientiae Circumstantiae, 2014, 34(12): 3144-3151.
ZHANG L, HUANG S S, DENG W, et al. Dichloromethane catalytic combustion over Co3O4 catalysts supported on MFI type zeolites [J]. Microporous and Mesoporous Materials, 2021, 312(1): 110599.
PANG J, YIN M, WU P, et al. Redispersion and stabilization of Cu/MFI catalysts by the encapsulation method for ethanol dehydrogenation [J]. ACS Sustainable Chemistry & Engineering, 2023, 11(8): 3297-3305.
SHANG W X, GAO M Y, CHAI Y C, et al. Stabilizing isolated rhodium cations by MFI zeolite for heterogeneous methanol carbonylation [J]. ACS Catalysis, 2021, 11(12): 7249-7256.
MA S, LIU Z P. Zeolite-confined subnanometric PtSn mimicking mortise-and-tenon joinery for catalytic propane dehydrogenation [J]. Nature Communications, 2022, 13: 2716.
DE S, OULD-CHIKH S, AGUILAR A, et al. Stable Cr-MFI catalysts for the nonoxidative dehydrogenation of ethane: Catalytic performance and nature of the active sites [J]. ACS Catalysis, 2021, 11(7): 3988-3995.
曾昭槐. 择形催化[M]. 北京: 中国石化出版社, 1994.
ZENG Z H. Shape selective catalysis [M]. Beijing: China Petrochemical Press, 1994.
ČEJKA J, KOTRLA J, KREJČÍ A. Disproportionation of trimethyl benzenes over large pore zeolites: Catalytic and adsorption study [J]. Applied Catalysis A: General, 2004, 277(1/2): 191-199.
OSMAN M, HOSSAIN M M, AL-KHATTAF S. Kinetics study of ethylbenzene alkylation with ethanol over medium and large pore zeolites [J]. Industrial & Engineering Chemistry Research, 2013, 52(38): 13613-13621.
BIDART A M, BORGES A P, CHAGAS H C, et al. Mechanistic aspects of Friedel-Crafts alkylation over FeY zeolite [J]. Journal of the Brazilian Chemical Society, 2006, 17: 758-762.
PALANICHAMY V M, ARABINDOO B, MURUGESAN V. Vapour phase alkylation of ethylbenzene with t-butyl alcohol over mesoporous Al-MCM-41 molecular sieves [J]. Journal of Chemical Sciences, 2002, 114: 203-212.
ZHAO D, CHU W, WANG Y, et al. Organic promoter-driven fast synthesis of zeolite beta and its acceleration mechanism [J]. Journal of Materials Chemistry A, 2018, 6(47): 24614-24624.
WANG Y, ZHANG Y, LIU W, et al. An efficient synthesis strategy for MOR zeolite [J]. Microporous and Mesoporous Materials, 2022, 346: 112282.
WANG Y, GAO Y, XIE S, et al. Adjustment of the Al siting in MCM-22 zeolite and its effect on alkylation performance of ethylene with benzene [J]. Catalysis Today, 2018, 316: 71-77.
ARAUJO A S, SILVA A O S, SOUZA M J B, et al. Crystallization of ZSM-12 zeolite with different Si/Al ratio [J]. Adsorption, 2005, 11: 159-165.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构