浏览全部资源
扫码关注微信
1.中国石油大学(北京) 化学工程与环境学院,重质油全国重点实验室,北京 102249
2.中石化石油化工科学研究院有限公司,北京 100083
江苇(1993—),博士研究生,研究方向为化工过程系统集成与优化,E-mail:jwkoui@foxmail.com。
邓春(1984—),博士,教授,研究方向为化工过程系统工程和气体分离,E-mail:chundeng@cup.edu.cn。
纸质出版日期:2024-09-25,
收稿日期:2024-03-05,
修回日期:2024-04-19,
移动端阅览
江苇,王梦颖,邓春等.天然气水合物开采耦合重整制氢系统的能效和经济性评价[J].低碳化学与化工,2024,49(09):26-32.
JIANG Wei,WANG Mengying,DENG Chun,et al.Energy efficiency and economic evaluation of coupled natural gas hydrate exploitation and reforming hydrogen production system[J].Low-carbon Chemistry and Chemical Engineering,2024,49(09):26-32.
江苇,王梦颖,邓春等.天然气水合物开采耦合重整制氢系统的能效和经济性评价[J].低碳化学与化工,2024,49(09):26-32. DOI: 10.12434/j.issn.2097-2547.20240087.
JIANG Wei,WANG Mengying,DENG Chun,et al.Energy efficiency and economic evaluation of coupled natural gas hydrate exploitation and reforming hydrogen production system[J].Low-carbon Chemistry and Chemical Engineering,2024,49(09):26-32. DOI: 10.12434/j.issn.2097-2547.20240087.
为提高天然气水合物开采耦合重整制氢系统能效,对该系统进行了工艺设计及建模,并建立了能效评估和经济性分析模型。围绕重整过程中燃料供热或电重整的选择,电重整中是否集成海上风电,H
2
分离过程中膜分离或醇胺法的选择,对比了不同技术方案下系统的㶲效比和年度总费用。结果表明,系统C重整单元采用电重整,未集成海上风电,分离单元采用膜分离,其㶲效比最高(2.25)。系统B重整单元采用燃料供热,分离单元采用膜分离,年度总费用最低(5803.91 × 10
6
CNY/a)。系统F集成了海上风电,分离单元采用醇胺法,年度总费用最高(5862.09 × 10
6
CNY/a),比经济性最好的系统B仅高约1.0%,但系统能效更高。这说明膜分离和海上风电应用于水合物开采平台,在能效和经济性方面都具有较大潜力。
To improve the energy efficiency of a coupled natural gas hydrate exploitation and reforming hydrogen production system
process design and modeling were conducted
and models for energy efficiency assessment and economic analysis were established. Focusing on the selection between fuel heating or electric reforming in the reforming process
whether offshore wind power is integrated in electric reforming
and t
he selection between membrane separation or amine scrubbing in H
2
separation
the exergy efficiency ratio and annual total cost of different technical schemes were compared. The results show that System C
with electric reforming without offshore wind power integration and membrane separation
has the highest exergy efficiency ratio (2.25). System B
with fuel heating reforming and membrane separation
has the lowest annual total cost (5803.91 × 10
6
CNY/a). System F
which integrates offshore wind power and uses amine scrubbing for separation
has the highest annual total cost (5862.09 × 10
6
CNY/a)
only about 1.0% higher than the most economically efficient System B
but with higher energy efficiency. This indicates that the application of membrane separation and offshore wind power on hydrate exploitation platforms has significant potential in both energy efficiency and economy.
天然气水合物开采重整制氢工艺设计能效经济性
natural gas hydrate exploitationreforming hydrogen productionprocess designenergy efficiencyeconomic evaluation
BOSWELL R, COLLETT T S. Current perspectives on gas hydrate resources [J]. Energy & Environmental Science, 2011, 4(4): 1206-1215.
KIM H C, BISHNOI P R, HEIDEMANN R A, et al. Kinetics of methane hydrate decomposition [J]. Chemical Engineering Science, 1987, 42(7): 1645-1653.
MORIDIS G J, COLLETT T S, DALLIMORE S R, et al. Numerical studies of gas production from several CH4 hydrate zones at the Mallik site, Mackenzie Delta, Canada [J]. Journal of Petroleum Science and Engineering, 2004, 43(3): 219-238.
NASRIFAR K, MOSHFEGHIAN M, MADDOX R N. Prediction of equilibrium conditions for gas hydrate formation in the mixtures of both electrolytes and alcohol [J]. Fluid Phase Equilibria, 1998, 146(1): 1-13.
OHGAKI K, TAKANO K, SANGAWA H, et al. Methane exploitation by carbon dioxide from gas hydrates—phase equilibria for CO2-CH4 mixed hydrate system— [J]. Journal of Chemical Engineering of Japan, 1996, 29(3): 478-483.
WANG Y, LI X S, LI G, et al. Experimental study on the hydrate dissociation in porous media by five-spot thermal huff and puff method [J]. Fuel, 2014, 117: 688-696.
DEMIRBAS A. Methane hydrates as potential energy resource: Part 1—Importance, resource and recovery facilities [J]. Energy Conversion and Management, 2010, 51(7): 1547-1561.
NING F L, YU Y B, KJELSTRUP S, et al. Mechanical properties of clathrate hydrates: Status and perspectives [J]. Energy & Environmental Science, 2012, 5(5): 6779-6795.
PARK Y, KIM D Y, LEE J W, et al. Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates [J]. Proceedings of the National Academy of Sciences, 2006, 103(34): 12690-12694.
KANG H, KOH D Y, LEE H. Nondestructive natural gas hydrate recovery driven by air and carbon dioxide [J]. Scientific Reports, 2014, 4(1): 6616.
SHI M, WOODLEY J M, VON SOLMS N. An experimental study on improved production performance by depressurization combined with CO2-enriched air injection [J]. Energy & Fuels, 2020, 34(6): 7329-7339.
WANG X H, SUN Y F, WANG Y F, et al. Gas production from hydrates by CH4-CO2/H2 replacement [J]. Applied Energy, 2017, 188: 305-314.
SUN Y F, ZHONG J R, LI R, et al. Natural gas hydrate exploitation by CO2/H2 continuous Injection-Production mode [J]. Applied Energy, 2018, 226: 10-21.
王晓辉, 许强, 郑华星, 等. 天然气水合物置换开采的能源效率研究[J]. 化工学报, 2020, 71(12): 5754-5762.
WANG X H, XU Q, ZHENG H X, et al. Energy efficiency analysis of natural gas hydrates production method [J]. CIESC Journal, 2020, 71(12): 5754-5762.
WANG M Y, DENG C, CHEN H N, et al. An analytical investigation on the energy efficiency of integration of natural gas hydrate exploitation with H2 production (by in situ CH4 reforming) and CO2 sequestration [J]. Energy Conversion and Management, 2020, 216: 112959.
王梦颖. 余热回收系统集成方法及其在天然气水合物开采耦合制氢过程中的应用[D]. 北京: 中国石油大学(北京), 2021.
WANG M Y. Integration method of waste heat recovery system and its application in gas hydrate exploitation with h2 production process [D]. Beijing: China University of Petroleum-Beijing, 2021.
樊栓狮, 刘发平, 郎雪梅, 等. CO2捕集与置换开采天然气水合物中甲烷的研究进展[J]. 天然气化工—C1化学与化工, 2022, 47(4): 1-10.
FAN S S, LIU F P, LANG X M, et al. Research progress of CO2 capture and replacement of methane from natural gas hydrates [J]. Natural Gas Chemical Industry, 2022, 47(4): 1-10.
CAO B J, SUN Y F, CHEN H N, et al. An approach to the high efficient exploitation of nature gas hydrate and carbon sequestration via injecting CO2/H2 gas mixture with varying composition [J]. Chemical Engineering Journal, 2023, 455: 140634.
WEI W N, LI B, GAN Q, et al. Research progress of natural gas hydrate exploitation with CO2 replacement: A review [J]. Fuel, 2022, 312: 122873.
宋虎潮, 边浩, 林啸龙, 等. 电气化甲烷重整技术研究进展[J]. 低碳化学与化工, 2024, 49(4): 1-11.
SONG H C, BIAN H, LIN X L, et al. Research progress on electrified methane reforming technology [J]. Low-Carbon Chemistry and Chemical Engineering, 2024, 49(4): 1-11.
李海波. 深远海海上风电制氨场景及技术分析[J]. 低碳化学与化工, 2024, 49(2): 115-123.
LI H B. Deep-sea offshore wind power ammonia production scenario and technical analysis [J]. Low-Carbon Chemistry and Chemical Engineering, 2024, 49(2): 115-123.
VINCE F, MARECHAL F, AOUSTIN E, et al. Multi-objective optimization of RO desalination plants [J]. Desalination, 2008, 222(1): 96-118.
LI X, SINGH R P, DUDECK K W, et al. Influence of polybenzimidazole main chain structure on H2/CO2 separation at elevated temperatures [J]. Journal of Membrane Science, 2014, 461: 59-68.
YU Y S, ZHANG X, LIU J W, et al. Natural gas hydrate resources and hydrate technologies: A review and analysis of the associated energy and global warming challenges [J]. Energy & Environmental Science, 2021, 14(11): 5611-5668.
EL-HALWAGI M M. Chapter 2—Overview of process economics [M]//EL-HALWAGI M M. Sustainable Design Through Process Integration (2nd ed). Butterworth-Heinemann, 2017: 15-71.
HAMELINCK C N, FAAIJ A P C. Future prospects for production of methanol and hydrogen from biomass [J]. Journal of Power Sources, 2002, 111(1): 1-22.
WALSH M R, HANCOCK S H, WILSON S J, et al. Preliminary report on the commercial viability of gas production from natural gas hydrates [J]. Energy Economics, 2009, 31(5): 815-823.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构