浏览全部资源
扫码关注微信
1.中国科学院 上海高等研究院 低碳转化科学与工程重点实验室,上海 201210
2.上海科技大学 物质科学与技术学院,上海 201210
3.中国科学院大学,北京 100049
王迎霄(1999—),硕士研究生,研究方向为甲烷光催化转化,E-mail:wangyx@sari.ac.cn。
孙楠楠(1983—),博士,研究员,博士研究生导师,研究方向为温室气体减排,E-mail:sunnn@sari.ac.cn;
魏伟(1971—),博士,研究员,博士研究生导师,研究方向为碳中和关键技术与战略,E-mail:weiwei@sari.ac.cn。
纸质出版日期:2024-08-25,
收稿日期:2024-03-04,
修回日期:2024-04-22,
移动端阅览
王迎霄,张春来,郝英东等.AgCl/ZnO上CH4光催化部分氧化制HCHO性能研究[J].低碳化学与化工,2024,49(08):46-56.
WANG Yingxiao,ZHANG Chunlai,HAO Yingdong,et al.Study on performance of photocatalytic partial oxidation of CH4 to HCHO on AgCl/ZnO[J].Low-carbon Chemistry and Chemical Engineering,2024,49(08):46-56.
王迎霄,张春来,郝英东等.AgCl/ZnO上CH4光催化部分氧化制HCHO性能研究[J].低碳化学与化工,2024,49(08):46-56. DOI: 10.12434/j.issn.2097-2547.20240082.
WANG Yingxiao,ZHANG Chunlai,HAO Yingdong,et al.Study on performance of photocatalytic partial oxidation of CH4 to HCHO on AgCl/ZnO[J].Low-carbon Chemistry and Chemical Engineering,2024,49(08):46-56. DOI: 10.12434/j.issn.2097-2547.20240082.
CH
4
光催化部分氧化为CH
3
OH、HCHO等产物是一种潜在的低能耗CH
4
转化路径,该转化路径存在CH
4
活化难度高和产物选择性低等问题,高性能催化剂的设计和制备对解决这一系列问题至关重要。使用不同Zn前驱体,通过水热法分别制备了具有块状颗粒、纳米花、纳米片和团聚纳米颗粒等不同形貌特征的ZnO-
x
光催化剂,发现形貌特征对ZnO-
x
的CH
4
光催化部分氧化制HCHO性能(简称“CH
4
光催化氧化性能”)有显著影响。采用CH
4
光催化氧化性能最好的ZnO-Cl为基底,进一步制备了
n
AgCl/ZnO-Cl光催化剂(
n
为AgNO
3
物质的量分数)。采用X射线衍射、N
2
吸/脱附和扫描电子显微镜等对光催化剂进行了表征,并研究了
n
AgCl/ZnO-Cl的CH
4
光催化氧化性能。结果表明,2.0%AgCl/ZnO-Cl表现出了最优的CH
4
光催化氧化性能。在5 mg 2.0%AgCl/ZnO-Cl作用下,当反应条件为25 ℃、0.1 MPa O
2
、2.9 MPa CH
4
、75 mL H
2
O、光照强度450 mW/cm
2
和光照2 h时,含氧液相产物(CH
3
OH + CH
3
OOH + HCHO)总产率达到10409 μmol/(g·h),含氧液相产物总选择性为91.4%,其中主产物HCHO产率为6271 μmol/(g·h),HCHO选择性为60.2%。自由基捕获实验结果表明,•O
2
-
和空穴是CH
4
活化为•CH
3
的关键,并且•O
2
-
与•CH
3
的相互作用成为了反应的主要路径,该路径得到的初级产物(CH
3
OOH)能够较为容易的被氧化为HCHO,从而显著提升了
n
AgCl/ZnO-Cl的HCHO选择性。
The photocatalytic partial oxidation of CH
4
to CH
3
OH
HCHO and other products is a potential low-energy CH
4
conversion path
which has the problems of high activation difficulty of CH
4
and low product selectivity. The design and preparation of high-performance catalysts are crucial to solve these problems. Based on the hydrothermal method
ZnO-
x
catalysts with different morphologies including granules
nano-flower
nano-flake and agglomerated nanoparticles were prepared by varying Zn precursors. It is found that the morphologies of ZnO-
x
has a significant effect on photocatalytic partial oxidation of CH
4
to HCHO (short for “CH
4
photocatalytic oxidation performance”). The
n
AgCl/ZnO-Cl photocatalysts (
n
is the mole fraction of AgNO
3
) were further prepared by using ZnO-Cl as the substrate with the best CH
4
photocatalytic oxidation performance. The samples were characterized by X-ray diffraction
N
2
adsorption/desorption and scanning electron microscopy
etc. The results show that 2.0%AgCl/ZnO-Cl shows the best CH
4
photocatalytic oxidation performance. Under the action of 5 mg 2.0%AgCl/ZnO-Cl and reaction conditions of temperature of 25 ℃
O
2
pressure of 0.1 MPa
CH
4
pressure of 2.9 MPa
H
2
O volume of 75 mL
light intensity of 450 mW/cm
2
and illumination time of 2 h. The total yield of oxygenated liquid products (CH
3
OH + CH
3
OOH + HCHO) is 10409 μmol/(g·h)
and the total selectivity of oxygenated liquid products is 91.4%
and the main product HCHO is 6271 μmol/(g·h) with HCHO selectivity of 60.2%. Based on radical trapping experiments
it is found that the formation of •O
2
-
and the holes are the key to the activation of CH
4
to •CH
3
and more importantly
interaction of •O
2
-
and •CH
3
becomes the major reaction path. In such a way
the initial product (CH
3
OOH) can be further oxidized to HCHO
and thus leading to the promotion of HCHO selectivity of
n
AgCl/ZnO-Cl.
CH4光催化部分氧化ZnOHCHO
CH4photocatalytic partial oxidationZnOHCHO
Energy Institute. Statistical review of world energy 2023 [R/OL]. (2023-06-26)[2024-04-22]. https://www.energyinst.org/statistical-reviewhttps://www.energyinst.org/statistical-review.
黎园. 我国天然气化工产业发展现状及前景分析[J]. 低碳化学与化工, 2024, 49(1): 105-112.
LI Y. Analysis of current development status and prospects of China’s natural gas chemical industry [J]. Low-Carbon Chemistry and Chemical Engineering, 2024, 49(1): 105-112.
LI Q, OUYANG Y X, LI H L, et al. Photocatalytic conversion of methane: Recent advancements and prospects [J]. Angewandte Chemie International Edition, 2022, 61(2): e202108069.
CAI X J, HU Y H. Advances in catalytic conversion of methane and carbon dioxide to highly valuable products [J]. Energy Science & Engineering, 2019, 7(1): 4-29.
ZHU Z Z, GUO W Y, ZHANG Y, et al. Research progress on methane conversion coupling photocatalysis and thermocatalysis [J]. Carbon Energy, 2021, 3(4): 519-540.
GĘSICKA A, OLESKOWICZ-POPIEL P, ŁĘŻYK M. Recent trends in methane to bioproduct conversion by methanotrophs [J]. Biotechnology Advances, 2021, 53: 107861.
郭树奇, 费强. 甲烷生物利用及嗜甲烷菌的工程改造[J]. 生物工程学报, 2021, 37(3): 816-830.
GUO S Q, FEI Q. Bioconversion of methane by metabolically engineered methanotrophs [J]. Chinese Journal of Biotechnology, 2021, 37(3): 816-830.
MAO J, LIU H, CUI X J, et al. Direct conversion of methane with O2 at room temperature over edge-rich MoS2 [J]. Nature Catalysis, 2023, 6(11): 1052-1061.
CHEN S, HUANG D L, XU P, et al. Semiconductor-based photocatalysts for photocatalytic and photoelectrochemical water splitting: Will we stop with photocorrosion? [J]. Journal of Materials Chemistry A, 2020, 8(5): 2286-2322.
ZHANG X B, WANG Y Q, CHANG K, et al. Constructing hollow porous Pd/H-TiO2 photocatalyst for highly selective photocatalytic oxidation of methane to methanol with O2 [J]. Applied Catalysis B: Environmental, 2023, 320: 121961.
ZENG M Y, CHENG L, GU Q Q, et al. ZSM-5-confined Cr1-O4 active sites boost methane direct oxidation to C1 oxygenates under mild conditions [J]. EES Catalysis, 2023, 1(2): 153-161.
WANG J X, ZHANG L, ZENG D, et al. Multi-radicals mediated one-step conversion of methane to acetic acid via photocatalysis [J]. Applied Catalysis B: Environmental, 2023, 337: 122983.
LI X Y, WANG C, TANG J W. Methane transformation by photocatalysis [J]. Nature Reviews Materials, 2022, 7(8): 617-632.
MA Z L, CHEN Y H, GAO C, et al. A minireview on the role of cocatalysts in semiconductor-based photocatalytic CH4 conversion [J]. Energy & Fuels, 2022, 36(19): 11428-11442.
WANG P, SHI R, ZHAO Y X, et al. Selective photocatalytic oxidative coupling of methane via regulating methyl intermediates over metal/ZnO nanoparticles [J]. Angewandte Chemie International Edition, 2023, 62(23): e202304301.
LIANG X Z, WANG P, GAO Y G, et al. Design and synthesis of porous M-ZnO/CeO2 microspheres as efficient plasmonic photocatalysts for nonpolar gaseous molecules oxidation: Insight into the role of oxygen vacancy defects and M = Ag, Au nanoparticles [J]. Applied Catalysis B: Environmental, 2020, 260: 118151.
DU H R, LI X P, CAO Z Y, et al. Photocatalytic O2 oxidation of CH4 to CH3OH on AuFe-ZnO bifunctional catalyst [J]. Applied Catalysis B: Environmental, 2023, 324: 122291.
JIANG W B, LOW J X, MAO K K, et al. Pd-modified ZnO-Au enabling alkoxy intermediates formation and dehydrogenation for photocatalytic conversion of methane to ethylene [J]. Journal of the American Chemical Society, 2021, 143(1): 269-278.
SONG H, MENG X G, WANG S Y, et al. Direct and selective photocatalytic oxidation of CH4 to oxygenates with O2 on cocatalysts/ZnO at room temperature in water [J]. Journal of the American Chemical Society, 2019, 141(51): 20507-20515.
FAN Y Y, ZHOU W C, QIU X Y, et al. Selective photocatalytic oxidation of methane by quantum-sized bismuth vanadate [J]. Nature Sustainability, 2021, 4(6): 509-515.
WEI S L, ZHU X L, ZHANG P Y, et al. Aerobic oxidation of methane to formaldehyde mediated by crystal-O over gold modified tungsten trioxide via photocatalysis [J]. Applied Catalysis B: Environmental, 2021, 283: 119661.
LUO L, HAN X Y, WANG K R, et al. Nearly 100% selective and visible-light-driven methane conversion to formaldehyde via single-atom Cu and Wδ+ [J]. Nature Communications, 2023, 14(1): 2690.
郝英东, 刘双, 孙楠楠, 等. Fe(Ⅲ)Ox/ZnO催化剂的制备及其光催化CH4氧化性能[J]. 燃料化学学报, 2022, 50(9): 1160-1166.
HAO Y D, LIU S, SUN N N, et al. Photocatalytic oxidation of CH4 to oxygenates on Fe(III)Ox/ZnO [J]. Journal of Fuel Chemistry and Technology, 2022, 50(9): 1160-1166.
BRUNAUER S, EMMETT P H, TELLER E. Adsorption of gases in multimolecular layers [J]. Journal of the American Chemical Society, 1938, 60(2): 309-319.
VERMA S, YOUNIS S A, KIM K-H, et al. Anisotropic ZnO nanostructures and their nanocomposites as an advanced platform for photocatalytic remediation [J]. Journal of Hazardous Materials, 2021, 415: 125651.
JIANG Y H, ZHAO W S, LI S Y, et al. Elevating photooxidation of methane to formaldehyde via TiO2 crystal phase engineering [J]. Journal of the American Chemical Society, 2022, 144(35): 15977-15987.
GUO Q Q, LUO Y, XU J, et al. Low-concentration CO2 conversion on AgxNa1-xTaO3-AgCl heterojunction photocatalyst [J]. Applied Catalysis B: Environmental, 2023, 324: 122253.
ZHAI J X, ZHOU B W, WU H H, et al. Selective photocatalytic aerobic oxidation of methane into carbon monoxide over Ag/AgCl@SiO2 [J]. Chemical Science, 2022, 13(16): 4616-4622.
HAN C, YANG M-Q, ZHANG N, et al. Enhancing the visible light photocatalytic performance of ternary CdS (graphene-Pd) nanocomposites via a facile interfacial mediator and co-catalyst strategy [J]. Journal of Materials Chemistry A, 2014, 2(45): 19156-19166.
TANG H L, MA Y Q, SUN X, et al. Elevated photooxidation of CH4 to C1 liquid products over an anatase/rutile TiO2 biphase junction [J]. Journal of Materials Chemistry A, 2023, 11(36): 19629-19636.
JIANG Y H, LI S Y, FAN X Y, et al. Recent advances on aerobic photocatalytic methane conversion under mild conditions [J]. Nano Research, 2023, 16(11): 12558-12571.
ZHENG K, WU Y, ZHU J C, et al. Room-temperature photooxidation of CH4 to CH3OH with nearly 100% selectivity over hetero-ZnO/Fe2O3 porous nanosheets [J]. Journal of the American Chemical Society, 2022, 144(27): 12357-12366.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构