浏览全部资源
扫码关注微信
江南大学 化学与材料工程学院,江苏 无锡 214122
李真薇(1999—),硕士研究生,研究方向为甲烷干重整,E-mail:6210612022@stu.jiangnan.edu.cn。
刘小浩(1976—),博士,教授,研究方向为碳一化学与化工,E-mail:liuxh@jiangnan.edu.cn。
纸质出版日期:2024-08-25,
收稿日期:2024-03-02,
修回日期:2024-03-20,
移动端阅览
李真薇,李玉峰,陈杰等.载体形貌调控Ni基催化剂甲烷干重整反应性能的研究[J].低碳化学与化工,2024,49(08):57-65.
LI Zhenwei,LI Yufeng,CHEN Jie,et al.Study on reaction performance in methane dry reforming over Ni-based catalysts regulated by support morphologies[J].Low-carbon Chemistry and Chemical Engineering,2024,49(08):57-65.
李真薇,李玉峰,陈杰等.载体形貌调控Ni基催化剂甲烷干重整反应性能的研究[J].低碳化学与化工,2024,49(08):57-65. DOI: 10.12434/j.issn.2097-2547.20240078.
LI Zhenwei,LI Yufeng,CHEN Jie,et al.Study on reaction performance in methane dry reforming over Ni-based catalysts regulated by support morphologies[J].Low-carbon Chemistry and Chemical Engineering,2024,49(08):57-65. DOI: 10.12434/j.issn.2097-2547.20240078.
甲烷干重整(DRM)反应对于温室气体CO
2
和CH
4
的共转化利用具有重要的研究意义。然而,该反应在实际应用中面临着催化剂容易积碳而失活的问题。通过制备花状、颗粒状以及片状MgO负载的Ni基催化剂,考察了载体形貌对催化剂DRM反应性能的影响,并结合XRD、SEM、H
2
-TPR、CO
2
-TPD和TG等表征手段对其影响机制进行了阐述。结果表明,在温度为800 ℃、空速为54000 mL/(g·h)下,经过50 h反应后,花状MgO负载的Ni基催化剂的CO
2
和CH
4
的平均转化率分别达到了90.2%和82.3%,
n
(H
2
)/
n
(CO)的平均值为0.93,与颗粒状和片状MgO负载的催化剂相比,具有较高的活性、稳定性和抗积碳性能。这是由于花状MgO负载的Ni基催化剂具有较高的比表面积,有利于活性金属的分散。同时,花状MgO表面存在更多的碱性位点,有利于CO
2
的吸附活化,增强催化剂抗积碳性能,提高DRM反应活性与稳定性。
The methane dry reforming (DRM) reaction is of great significance for the co-conversion and utilization of gre
enhouse gases CO
2
and CH
4
. However
this reaction faces the crucial problem of catalyst deactivation caused by carbon deposition. The influence of support morphologies on the reaction performance in DRM over Ni-based catalysts was investigated by preparing flower-shaped
granular and sheet-like MgO supported catalysts. The influence mechanisms were clarified by various characterizations such as XRD
SEM
H
2
-TPR
CO
2
-TPD and TG. The results show that under the temperature of 800 °C and space velocity of 54000 mL/(g·h)
the average CO
2
and CH
4
conversion rates of Ni-based catalysts supported on flower-shaped MgO reach 90.2% and 82.3%
respectively
with the average
n
(H
2
)/
n
(CO) of 0.93 after 50 h reaction. Compared with Ni-based catalysts supported on granular and sheet-like MgO
the Ni-based catalyst supported on flower-shaped MgO exhibits higher activity
stability and anti-carbon deposition ability. This is because the flower-shaped MgO has a higher specific surface area favorable for the dispersion of active metals
and there are more alkaline sites on the surface of flower-shaped MgO
which contribute to the adsorption and activation of CO
2
enhance the anti-carbon deposition ability of catalysts and improve the activity and stability of DRM reaction.
甲烷干重整载体形貌Ni基催化剂积碳催化性能
methane dry reformingsupport morphologyNi-based catalystcarbon depositioncatalytic performance
NIU J T, LILAND S E, YANG J, et al. Effect of oxide additives on the hydrotalcite derived Ni catalysts for CO2 reforming of methane [J]. Chemical Engineering Journal, 2019, 377(1): 119763.
VELTY A, CORMA A. Advanced zeolite and ordered mesoporous silica-based catalysts for the conversion of CO2 to chemicals and fuels [J]. Chemical Society Reviews, 2023, 52(5): 1773-1946.
GUBANOVA E L, SCHUURMAN Y, SADYKOV V A, et al. Evaluation of kinetic models for the partial oxidation of methane to synthesis gas over a Pt/PrCeZrOx catalyst coated on a triangular monolith [J]. Chemical Engineering Journal, 2009, 154(1): 174-184.
TALYAN V, DAHIYA R P, ANAND S, et al. Quantification of methane emission from municipal solid waste disposal in Delhi [J]. Resources Conservation and Recycling, 2007, 50(3): 240-259.
YUSUF R O, NOOR Z Z, ABBA A H, et al. Methane emission by sectors: A comprehensive review of emission sources and mitigation methods [J]. Renewable and Sustainable Energy Reviews, 2012, 16(7): 5059-5070.
LI X G, SAN X G, ZHANG Y, et al. Direct synthesis of ethanol from dimethyl ether and syngas over combined H-mordenite and Cu/ZnO catalysts [J]. ChemSusChem, 2010, 3(10): 1192-1199.
JIAO F, BAI B, LI G, et al. Disentangling the activity-selectivity trade-off in catalytic conversion of syngas to light olefins [J]. Science, 2023, 380(6646): 727-730.
CHENG K, ZHOU W, KANG J C, et al. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability [J]. Chemistry, 2017, 3(2): 334-347.
LI X H, LIU X H, LIU Z W, et al. Supercritical phase process for direct synthesis of middle iso-paraffins from modified Fischer-Tropsch reaction [J]. Catalysis Today, 2005, 106(1): 154-160.
LIU X H, TOKUNAGA M. Controllable Fischer-Tropsch synthesis by in situ-produced 1-olefins [J]. ChemCatChem, 2010, 2(12): 1569-1572.
LIU X H, LINGHU W S, LI X H, et al. Effects of solvent on Fischer-Tropsch synthesis [J]. Applied Catalysis A: General, 2006, 303(2): 251-257.
JIANG F, LIU B, LI W P, et al. Two-dimensional graphene-directed formation of cylindrical iron carbide nanocapsules for Fischer-Tropsch synthesis [J]. Catalysis Science & Technology, 2017, 7(20): 4609-4621.
LIU Z Y, ZHANG F, RUI N, et al. Highly active ceria-supported Ru catalyst for the dry reforming of methane: In situ identification of Ruδ+-Ce3+ interactions for enhanced conversion [J]. ACS Catalysis, 2019, 9(4): 3349-3359.
OWGI A H K, JALIL A A, HUSSAIN I, et al. Catalytic systems for enhanced carbon dioxide reforming of methane: A review [J]. Environmental Chemistry Letters, 2021, 19(3): 2157-2183.
SHEN D Y, HUO M M, LI L, et al. Effects of alumina morphology on dry reforming of methane over Ni/Al2O3 catalysts [J]. Catalysis Science Technology, 2020, 10(2): 510-516.
PEI Z X, YUAN Z W, WANG C J, et al. A Flexible rechargeable zinc-air battery with excellent low-temperature adaptability [J]. Angewandte Chemie International Edition, 2020, 59(12): 4793-4799.
REULE A A C, SHEN J, SEMAGINA N. Copper Affects the location of zinc in bimetallic ion-exchanged mordenite [J]. ChemPhysChem, 2018, 19(12): 1500-1506.
TIAN S C, YAN F, ZHANG Z, et al. Calcium-looping reforming of methane realizes in situ CO2 utilization with improved energy efficiency [J]. Science Advances, 5(4): 5077.
XU Y, LIN Q, LIU B, et al. A facile fabrication of supported Ni/SiO2 Catalysts for dry reforming of methane with remarkably enhanced catalytic performance [J]. Catalysts, 2019, 9(2): 183.
XU Y, LI J, JIANG F, et al. Insight into the anti-coking ability of NiM/SiO2 (M = ZrO2, Ru) catalyst for dry reforming of CH4 to syngas [J]. International Journal of Hydrogen Energy, 2022, 47(4): 2268-2278.
SONG Y D, OZDEMIR E R, RAMESH S R A, et al. Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO [J]. Science, 2020, 367(6479): 777-781.
LIU W M, LI L, LIN S X, et al. Confined Ni-In intermetallic alloy nano-catalyst with excellent coking resistance for methane dry reforming [J]. Journal of Energy Chemistry, 2022, 65: 34-47.
ARENA F, FRUSTERI F, PARMALIANA A, et al. Effect of calcination on the structure of Ni/MgO catalyst: An X-ray diffraction study [J]. Journal of the Chemical Society, Faraday Transactions, 1996, 92(3): 469-471.
SINGHA R K, SHUKLA A, SANDUPATLA A, et al. Synthesis and catalytic activity of a Pd doped Ni-MgO catalyst for dry reforming of methane [J]. Journal of Materials Chemistry A, 2017, 5(30): 15688-15699.
DING X, YANG Y F, LI Z Y, et al. Engineering a nickel-oxygen vacancy interface for enhanced dry reforming of methane: A promoted effect of CeO2 introduction into Ni/MgO [J]. ACS Catalysis, 2023, 13(23): 15535-15545.
ZANGANEH R, REZAEI M, ZAMANIYAN A. Dry reforming of methane to synthesis gas on NiO-MgO nanocrystalline solid solution catalysts [J]. International Journal of Hydrogen Energy, 2013, 38(7): 3012-3018.
HU Y H, RUCKENSTEIN E. Binary MgO-based solid solution catalysts for methane conversion to syngas [J]. Catalysis Reviews, 2002, 44(3): 423-453.
ZHANG T, LIU Z, ZHU Y A, et al. Dry reforming of methane on Ni-Fe-MgO catalysts: Influence of Fe on carbon-resistant property and kinetics [J]. Applied Catalysis B, 2020, 264: 118497.
CHATLA A, ALMANASSRA I W, KALLEM P, et al. Dry (CO2) reforming of methane over zirconium promoted Ni-MgO mixed oxide catalyst: Effect of Zr addition [J]. Journal of CO2 Utilization, 2022, 62: 102082.
SINGHA R K, YADAV A, AGRAWAL A, et al. Synthesis of highly coke resistant Ni nanoparticles supported MgO/ZnO catalyst for reforming of methane with carbon dioxide [J]. Applied Catalysis B, 2016, 191: 165-178.
ZHANG Q, FENG X Q, LIU J, et al. Hollow hierarchical Ni/MgO-SiO2 catalyst with high activity, thermal stability and coking resistance for catalytic dry reforming of methane [J]. International Journal of Hydrogen Energy, 2018, 43(24): 11056-11068.
ZHOU H B, ZHANG T T, SUI Z J, et al. A single source method to generate Ru-Ni-MgO catalysts for methane dry reforming and the kinetic effect of Ru on carbon deposition and gasification [J]. Applied Catalysis B, 2018, 233: 143-159.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构