浏览全部资源
扫码关注微信
1.西南民族大学 化学与环境学院 化学基础国家民委重点实验室,四川 成都 610041
2.西南化工研究设计院有限公司 工业排放气综合利用国家重点实验室,国家碳一化学工程技术研究中心,四川 成都 610225
易宇楠(1992—),博士,副研究员,研究方向为能源小分子电催化转化,E-mail:yunan.yi@swun.edu.cn。
阳耀月(1988—),博士,教授,研究方向为能源转化与存储界面的机制及材料,E-mail:yaoyueyoung@swun.edu.cn。
纸质出版日期:2024-09-25,
收稿日期:2024-02-29,
修回日期:2024-04-12,
移动端阅览
易宇楠,倪雨茜,张嘉宁等.高熵合金催化剂在电解水制氢和氢燃料电池应用中的研究进展[J].低碳化学与化工,2024,49(09):62-71.
YI Yunan,NI Yuxi,ZHANG Jianing,et al.Research progress of high-entropy alloy catalysts in water electrolysis for hydrogen production and hydrogen fuel cells[J].Low-carbon Chemistry and Chemical Engineering,2024,49(09):62-71.
易宇楠,倪雨茜,张嘉宁等.高熵合金催化剂在电解水制氢和氢燃料电池应用中的研究进展[J].低碳化学与化工,2024,49(09):62-71. DOI: 10.12434/j.issn.2097-2547.20240074.
YI Yunan,NI Yuxi,ZHANG Jianing,et al.Research progress of high-entropy alloy catalysts in water electrolysis for hydrogen production and hydrogen fuel cells[J].Low-carbon Chemistry and Chemical Engineering,2024,49(09):62-71. DOI: 10.12434/j.issn.2097-2547.20240074.
发展绿色氢能和氢燃料电池被视为实现我国双碳目标的重要抓手,需要开发高活性、高稳定性且廉价的电催化剂。高熵合金(HEA)因其表面复杂性和成分可调性,为构建高性能的催化活性位点提供了可能。通过组分选择及调控,有望实现针对不同电化学反应的表面活性位点的优化,进而大幅度提升HEA催化剂性能。近年来,HEA材料在电催化领域受到了广泛关注,有望成为理想的新型电催化剂。介绍了HEA催化剂的主要合成方法,总结了HEA催化剂在电解水制氢和氢燃料电池中的最新应用,展望了HEA催化剂的发展趋势及面临的问题,以期为HEA催化剂的设计和制备提供参考。
Developing green hydrogen energy and hydrogen fuel cells is considered an important approach to achieving China’s carbon peaking and carbon neutrality goals
which requires the development of highly active
stable and cost-effective electrocatalysts. High-entropy alloy (HEA)
with their surface complexity and tunable compositions
offers potential for creating high-performance catalytic active sites. By selecting and regulating components
it is possible to optimize surface active sites for various electrochemical reactions
thereby significantly enhancing the performance of HEA catalysts. In recent years
HEA has garnered widespread attention in the field of electrocatalysis and is expected to become the ideal new electrocatalyst. The main synthesis methods of HEA catalysts were introduced
the latest applications of HEA catalysts in water electrolysis for hydrogen production and hydrogen fuel cells were summarized
and the development trends and challenges faced by HEA catalysts were discussed. The aim is to provide a reference for the design and preparation of HEA catalysts.
高熵合金催化剂电解水制氢氢燃料电池
high-entropy alloy catalystwater electrolysis for hydrogen productionhydrogen fuel cells
LI X P, HUANG C, HAN W K, et al. Transition metal-based electrocatalysts for overall water splitting [J]. Chinese Chemical Letters, 2021, 32(9): 2597-2616.
SAZALI N. Emerging technologies by hydrogen: A review [J]. International Journal of Hydrogen Energy, 2020, 45(38): 18753-18771.
张庆生, 黄雪松. 国内外氢能产业政策与技术经济性分析[J]. 低碳化学与化工, 2023, 48(2): 133-139.
ZHANG Q S, HUANG X S. Analysis of domestic and foreign hydrogen energy industrial policies and technical economy [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(2): 133-139.
IFKOVITS Z P, EVANS J M, MEIER M C, et al. Decoupled electrochemical water-splitting systems: A review and perspective [J]. Energy & Environmental Science, 2021, 14(9): 4740-4759.
SU H R, HU Y H. Recent advances in graphene-based materials for fuel cell applications [J]. Energy Science & Engineering, 2020, 9(7): 958-983.
YOU P Y, KAMARUDIN S K. Recent progress of carbonaceous materials in fuel cell applications: An overview [J]. Chemical Engineering Journal, 2017, 309: 489-502.
YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Advanced Engineering Materials, 2004, 6(5): 299-303.
SHA S M, GE R Y, LI Y, et al. High-entropy catalysts for electrochemical water-electrolysis of hydrogen evolution and oxygen evolution reactions [J]. Frontiers in Energy, 2024, 18: 265-290.
ZHANG Y Q, WANG D D, WANG S Y. High-entropy alloys for electrocatalysis: Design, characterization, and applications [J]. Small, 2021, 18(7): 2104339.
REN J T, CHEN L, WANG H Y, et al. High-entropy alloys in electrocatalysis: From fundamentals to applications [J]. Chemical Society Reviews, 2023, 52(23): 8319-8373.
ZHANG Y, ZHOU Y J, LIN J P, et al. Solid‐solution phase formation rules for multi-component alloys [J]. Advanced Engineering Materials, 2008, 10(6): 534-538.
LI H N, ZHU H, ZHANG S G, et al. Nano high-entropy materials: Synthesis strategies and catalytic applications [J]. Small Structures, 2020, 1(2): 202000033.
XIN Y, LI S H, QIAN Y Y, et al. High-entropy alloys as a platform for catalysis: Progress, challenges, and opportunities [J]. ACS Catalysis, 2020, 10(19): 11280-11306.
FOURMONT A, LE GALLET S, POLITANO O, et al. Effects of planetary ball milling on AlCoCrFeNi high entropy alloys prepared by Spark Plasma Sintering: Experiments and molecular dynamics study [J]. Journal of Alloys and Compounds, 2020, 820: 153448.
YAO Y G, HUANG Z N, XIE P F, et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles [J]. Science, 2018, 359(6383): 1489-1494.
GAO S J, HAO S Y, HUANG Z N, et al. Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis [J]. Nature Communications, 2020, 11(1): 2016.
LI H D, SUN M Z, PAN Y, et al. The self-complementary effect through strong orbital coupling in ultrathin high-entropy alloy nanowires boosting pH-universal multifunctional electrocatalysis [J]. Applied Catalysis B: Environmental, 2022, 312: 121431.
KHERADMANDFARD M, MINOUEI H, TSVETKOV N, et al. Ultrafast green microwave-assisted synthesis of high-entropy oxide nanoparticles for Li-ion battery applications [J]. Materials Chemistry and Physics, 2021, 262: 124265.
LIU M M, ZHANG Z H, OKEJIRI F, et al. Entropy-maximized synthesis of multimetallic nanoparticle catalysts via a ultrasonication-assisted wet chemistry method under ambient conditions [J]. Advanced Materials Interfaces, 2019, 6(7): 1900015.
WAAG F, LI Y, ZIEFUß A R, et al. Kinetically-controlled laser-synthesis of colloidal high-entropy alloy nanoparticles [J]. RSC Advances, 2019, 9(32): 18547-18558.
YAO C Z, ZHANG P, LIU M, et al. Electrochemical preparation and magnetic study of Bi-Fe-Co-Ni-Mn high entropy alloy [J]. Electrochimica Acta, 2008, 53(28): 8359-8365.
SHA C H, ZHOU Z F, XIE Z H, et al. Extremely hard, α-Mn type high entropy alloy coatings [J]. Scripta Materialia, 2020, 178: 477-482.
XUE J J, WU T, DAI Y Q, et al. Electrospinning and electrospun nanofibers: Methods, materials, and applications [J]. Chemical Reviews, 2019, 119(8): 5298-5415.
YUAN G, WU M Y, RUIZ PESTANA L. Density functional theory-machine learning characterization of the adsorption energy of oxygen intermediates on high-entropy alloys made of earth-abundant metals [J]. The Journal of Physical Chemistry C, 2023, 127(32): 15809-15818.
SUN H N, XU X M, KIM H S, et al. Electrochemical water splitting: Bridging the gaps between fundamental research and industrial applications [J]. Energy & Environmental Materials, 2023, 6(5): e12441.
ZHANG J M, YANG H B, ZHOU D J, et al. Adsorption energy in oxygen electrocatalysis [J]. Chemical Reviews, 2022, 122(23): 17028-17072.
LI H D, LAI J P, LI Z J, et al. Multi-sites electrocatalysis in high-entropy alloys [J]. Advanced Functional Materials, 2021, 31(47): 2106715.
YI Y N, WU Q B, LI J S, et al. Phase-segregated SrCo0.8Fe0.5-xO3-δ/FexOy heterostructured catalyst promotes alkaline oxygen evolution reaction [J]. ACS Applied Materials & Interfaces, 2021, 13(15): 17439-17449.
YU Z Y, DUAN Y, FENG X Y, et al. Clean and affordable hydrogen fuel from alkaline water splitting: Past, recent progress, and future prospects [J]. Advanced Materials, 2021, 33(31): 2007100.
ZHU H, ZHU Z F, HAO J C, et al. High-entropy alloy stabilized active Ir for highly efficient acidic oxygen evolution [J]. Chemical Engineering Journal, 2022, 431: 133251.
QIU H J, FANG G, GAO J J, et al. Noble metal-free nanoporous high-entropy alloys as highly efficient electrocatalysts for oxygen evolution reaction [J]. ACS Materials Letters, 2019, 1(5): 526-533.
NGUYEN T X, SU Y H, LIN C C, et al. Self-reconstruction of sulfate-containing high entropy sulfide for exceptionally high-performance oxygen evolution reaction electrocatalyst [J]. Advanced Functional Materials, 2021, 31(48): 2106229.
潘冶, 钟旭, 朱银安, 等. 高熵合金FeCoNiCrP的制备和电催化析氧性能[J]. 材料导报, 2022, 36(14): 33-37.
PAN Y, ZHONG X, ZHU Y A, et al. Preparation and electrocatalytic oxygen evolution performance of high-entroy alloy FeCoNiCrP [J]. Materials Reports, 2022, 36(14): 33-37.
LIU M M, ZHANG Z, OKEJIRI F, et al. Entropy-maximized synthesis of multimetallic nanoparticle catalysts via a ultrasonication-assisted wet chemistry method under ambient conditions [J]. Advanced Materials Interfaces, 2019, 6(7): 1900015.
LI H D, HAN Y, ZHAO H, et al. Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis [J]. Nature Communications, 2020, 11(1): 5437.
JIA Z, YANG T, SUN L G, et al. A novel multinary intermetallic as an active electrocatalyst for hydrogen evolution [J]. Advanced Materials, 2020, 32(21): 2000385.
MAO Q Q, MU X, DENG K, et al. Multisite synergism-induced electron regulation of high-entropy alloy metallene for boosting alkaline hydrogen evolution reaction [J]. Advanced Functional Materials, 2023, 33(42): 2304963.
HE Y T, ZHU X H, ZHANG C, et al. Self-circulating adsorption-desorption structure of non-noble high-entropy alloy electrocatalyst facilitates efficient water splitting [J]. ACS Sustainable Chemistry & Engineering, 2023, 11(13): 5055-5064.
KWON J, SUN S H, CHOI S , et al. Tailored electronic structure of Ir in high entropy alloy for highly active and durable bifunctional electrocatalyst for water splitting under an acidic environment [J]. Advanced Materials, 2023, 35(26): 2300091.
ZHOU P F, WONG P K, NIU P D, et al. Anodized AlCoCrFeNi high-entropy alloy for alkaline water electrolysis with ultra-high performance [J]. Science China Materials, 2022, 66(3): 1033-1041.
CHEN H, GUAN C Q, FENG H. Pt-based high-entropy alloy nanoparticles as bifunctional electrocatalysts for hydrogen and oxygen evolution [J]. ACS Applied Nano Materials, 2022, 5(7): 9810-9817.
CAI Z X, GOOU H, ITO Y, et al. Nanoporous ultra-high-entropy alloys containing fourteen elements for water splitting electrocatalysis [J]. Chemical Science, 2021, 12(34): 11306-11315.
KULKARNI A, SIAHROSTAMI S, PATEL A, et al. Understanding catalytic activity trends in the oxygen reduction reaction [J]. Chemical Reviews, 2018, 118(5): 2302-2312.
张瑞权, 姚振华, 胡茂从. 氢燃料电池阴极催化剂研究进展[J]. 现代化工, 2023, 43(8): 54-57.
ZHANG R Q, YAO Z H, HU M C. Research progress on cathode catalysts for hydrogen fuel cell [J]. Mordern Chemical Industry, 2023, 43(8): 54-57.
李静, 冯欣, 魏子栋. 铂基燃料电池氧还原反应催化剂研究进展[J]. 电化学, 2018, 24(6): 589-601.
LI J, FENG X, WEI Z D. Recent progress in Pt-based catalysts for oxygen reduction reaction [J]. Journal of Electrochemistry, 2018, 24(6): 589-601.
TAO L, SUN M Z, ZHOU Y, et al. A general synthetic method for high-entropy alloy subnanometer ribbons [J]. Journal of the American Chemical Society, 2022, 144(23): 10582-10590.
LI S Y, TANG X W, JIA H L, et al. Nanoporous high-entropy alloys with low Pt loadings for high-performance electrochemical oxygen reduction [J]. Journal of Catalysis, 2020, 383: 164-171.
RAO P, DENG Y J, FAN W J, et al. Movable type printing method to synthesize high-entropy single-atom catalysts [J]. Nature Communications, 2022, 13(1): 5071.
YAO Y C, LI Z J, DOU Y B, et al. High entropy alloy nanoparticles encapsulated in graphitised hollow carbon tubes for oxygen reduction electrocatalysis [J]. Dalton Transactions, 2023, 52(13): 4142-4151.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构