浏览全部资源
扫码关注微信
河北河钢材料技术研究院有限公司,河北 石家庄 050023
李鹏阳(1994—),硕士,助理工程师,研究方向为CO2资源化利用技术,E-mail:1146001241@qq.com。
李兰杰(1983—),博士,正高级工程师,研究方向为钒钛钢铁低碳冶金与新材料,E-mail:lilanjie@hbisco.com。
纸质出版日期:2024-11-25,
收稿日期:2024-02-29,
修回日期:2024-04-19,
移动端阅览
李鹏阳,王改荣,张彩东等.CO2加氢制甲醇催化剂理化性质对催化性能影响研究进展[J].低碳化学与化工,2024,49(11):12-20.
LI Pengyang,WANG Gairong,ZHANG Caidong,et al.Research progress on impact of physicochemical properties of catalysts on catalytic performances for CO2 hydrogenation to methanol[J].Low-carbon Chemistry and Chemical Engineering,2024,49(11):12-20.
李鹏阳,王改荣,张彩东等.CO2加氢制甲醇催化剂理化性质对催化性能影响研究进展[J].低碳化学与化工,2024,49(11):12-20. DOI: 10.12434/j.issn.2097-2547.20240073.
LI Pengyang,WANG Gairong,ZHANG Caidong,et al.Research progress on impact of physicochemical properties of catalysts on catalytic performances for CO2 hydrogenation to methanol[J].Low-carbon Chemistry and Chemical Engineering,2024,49(11):12-20. DOI: 10.12434/j.issn.2097-2547.20240073.
化石能源大规模利用造成CO
2
大量排放,并引发了系列气候问题。将CO
2
转化为甲醇可实现CO
2
的减排和资源化利用,是当前的研究热点。CO
2
加氢制甲醇催化剂已得到了广泛研究,但存在催化活性低、甲醇选择性差以及反应过程中产生的水导致催化剂失活和反应速率降低等问题。全面了解催化剂理化性质与催化性能之间的关系,对于开发高效稳定的催化体系至关重要。首先介绍了CO
2
加氢制甲醇的3种反应机理;然后综述了关于CO
2
加氢制甲醇催化剂理化性质对催化性能影响的研究进展,包括金属比表面积和孔隙率、金属颗粒尺寸和分散度、氧空位、酸碱性、金属-载体相互作用以及还原性等;最后对CO
2
加氢制甲醇催化剂的未来研究进行了展望。
The extensive use of fossil fuels have led to massive CO
2
emissions
causing a series of climate issues. Converting CO
2
into methanol can achieve CO
2
emission r
eduction and resource utilization
making it a current research hotspot. CO
2
hydrogenation to methanol catalysts have been extensively studied
but issues such as low catalytic activity
poor methanol selectivity and catalyst deactivation caused by water produced during the reaction
which slows the reaction
still exist. A comprehensive understanding of the relationship between the physicochemical properties of catalysts and their catalytic performance is crucial for the development of efficient and stable catalytic systems. Three reaction mechanisms for CO
2
hydrogenation to methanol were first introduced. Then the research progress on the impact of the physicochemical properties of CO
2
hydrogenation to methanol catalysts on their catalytic performances was reviewed
including metal specific surface area and porosity
metal particle size and dispersion
oxygen vacancy
acid-basicity
metal-support interaction and reducibility. Finally
the future researches for CO
2
hydrogenation to methanol catalysts were prospected.
CO2加氢甲醇催化剂理化性质催化性能
CO2 hydrogenationmethanol catalystsphysicochemical propertiescatalytic performances
XIAO Z R, LI P, ZHANG H, et al. A comprehensive review on photo-thermal co-catalytic reduction of CO2 to value-added chemicals [J]. Fuel, 2024, 362: 130906.
霍凯旋, 王阳, 吴明铂. CO2加氢制甲醇用Cu基催化剂研究进展[J]. 低碳化学与化工, 2023, 48(3): 22-31.
HUO K X, WANG Y, WU M B. Research progress on Cu-based catalysts for CO2 hydrogenation to methanol [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(3): 22-31.
YANG H Y, ZHANG C, GAO P, et al. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons [J]. Catalysis Science & Technology, 2017, 7(20): 4580-4598.
JIANG X, NIE X W, GUO X W, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis [J]. Chemical Reviews, 2020, 120(15): 7984-8034.
DIN I U, SHAHARUN M S, ALOTAIBI M A, et al. Recent developments on heterogeneous catalytic CO2 reduction to methanol [J]. Journal of CO2 Utilization, 2019, 34: 20-33.
GUIL-LOPEZ R, MOTA N, LLORENTE J, et al. Methanol synthesis from CO2: A review of the latest developments in heterogeneous catalysis [J]. Materials, 2019, 12(23): 3902.
ZHANG J P, SUN X H, WU C Y, et al. Engineering Cu+/CeZrOx interfaces to promote CO2 hydrogenation to methanol [J]. Journal of Energy Chemistry, 2023, 77: 45-53.
ONISHI N, HIMEDA Y. Homogeneous catalysts for CO2 hydrogenation to methanol and methanol dehydrogenation to hydrogen generation [J]. Coordination Chemistry Reviews, 2022, 472: 214767.
王佳静, 王建文, 李茂帅, 等. CO2催化加氢合成甲醇研究进展[J]. 石油炼制与化工, 2024, 55(2): 75-83.
WANG J J, WANG J W, LI M S, et al. Progress in methonal synthesis by CO2 catalytic hydrogenation [J]. Petroleum Processing and Petrochemical, 2024, 55(2): 75-83.
LI K Z, CHEN J G. CO2 hydrogenation to methanol over ZrO2-containing catalysts: Insights into ZrO2 induced synergy [J]. ACS catalysis, 2019, 9(9): 7840-7861.
GUO J X, LUO Z, HU G T, et al. Synthesis of oxygen vacancies enriched Cu/ZnO/CeO2 for CO2 hydrogenation to methanol [J]. Greenhouse Gases: Science and Technology, 2021, 11(6): 1171-1179.
CHEN Y Z, LI H L, ZHAO W H, et al. Optimizing reaction paths for methanol synthesis from CO2 hydrogenation via metal-ligand cooperativity [J]. Nature Communications, 2019, 10(1): 1885.
ZHONG J W, YANG X F, WU Z L, et al. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol [J]. Chemical Society Reviews, 2020, 49(5): 1385-1413.
LAM E, NOH G, LARMIER K, et al. CO2 hydrogenation on Cu-catalysts generated from ZnII single-sites: Enhanced CH3OH selectivity compared to Cu/ZnO/Al2O3 [J]. Journal of Catalysis, 2021, 394: 266-272.
LI Y W, CHAN S H, SUN Q. Heterogeneous catalytic conversion of CO2: A comprehensive theoretical review [J]. Nanoscale, 2015, 7(19): 8663-8683.
YANG Y, MEI D H, PEDEN C H F, et al. Surface-bound intermediates in low-temperature methanol synthesis on copper: Participants and spectators [J]. ACS Catalysis, 2015, 5(12): 7328-7337.
PHONGAMWONG T, CHANTAPRASERTPORN U, WITOON T, et al. CO2 hydrogenation to methanol over CuO-ZnO-ZrO2-SiO2 catalysts: Effects of SiO2 contents [J]. Chemical Engineering Journal, 2017, 316: 692-703.
SANTANA C S, RASTEIRO L F, MARCOS F C F, et al. Influence of Al, Cr, Ga, or Zr as promoters on the performance of Cu/ZnO catalyst for CO2 hydrogenation to methanol [J]. Molecular Catalysis, 2022, 528: 112512.
XIAO J, MAO D S, GUO X M, et al. Methanol synthesis from CO2 hydrogenation over CuO-ZnO-TiO2 catalysts: The influence of TiO2 content [J]. Energy Technology, 2015, 3(1): 32-39.
SANTANA C S, SHINE L S, VIEIRA L H, et al. Effect of the synthesis method on physicochemical properties and performance of Cu/ZnO/Nb2O5 catalysts for CO2 hydrogenation to methanol [J]. Industrial & Engineering Chemistry Research, 2021, 60(51): 18750-18758.
SUN X C, JIN Y F, CHENG Z Z, et al. Dual active sites over Cu-ZnO-ZrO2 catalysts for carbon dioxide hydrogenation to methanol [J]. Journal of Environmental Sciences, 2023, 131: 162-172.
CHEN K, FANG H H, WU S, et al. CO2 hydrogenation to methanol over Cu catalysts supported on La-modified SBA-15: The crucial role of Cu-LaOx interfaces [J]. Applied Catalysis B: Environmental, 2019, 251: 119-129.
JIANG Y, YANG H Y, GAO P, et al. Slurry methanol synthesis from CO2 hydrogenation over micro-spherical SiO2 support Cu/ZnO catalysts [J]. Journal of CO2 Utilization, 2018, 26: 642-651.
KOH M K, KHAVARIAN M, CHAI S P, et al. The morphological impact of siliceous porous carriers on copper-catalysts for selective direct CO2 hydrogenation to methanol [J]. International Journal of Hydrogen Energy, 2018, 43(19): 9334-9342.
XIN Y, LI Q, WANG S, et al. Cu/Nb2O5 composite aerogel for CO2 hydrogenation to methanol: Construction of porous structure and abundant active interfaces [J]. Chemical Engineering Journal, 2023, 470: 144289.
HUSSAIN I, JALIL A A, HAMID M Y S, et al. Recent advances in catalytic systems in the prism of physicochemical properties to remediate toxic CO pollutants: A state-of-the-art review [J]. Chemosphere, 2021, 277: 130285.
WANG Y. Catalytic hydrogenation of CO2 to methanol via MOF-confined ultrasmall Cu/ZnOx nanoparticles [J]. Acta Physico-Chimica Sinica, 2017, 33(5): 857-858.
QI T Q, LI W Z, LI H, et al. Yttria-doped Cu/ZnO catalyst with excellent performance for CO2 hydrogenation to methanol [J]. Molecular Catalysis, 2021, 509: 111641.
ZOU T S, ARAUJO T P, KRUMEICH F, et al. ZnO-promoted inverse ZrO2-Cu catalysts for CO2-based methanol synthesis under mild conditions [J]. ACS Sustainable Chemistry & Engineering, 2021, 10(1): 81-90.
KARELOVIC A, RUIZ P. The role of copper particle size in low pressure methanol synthesis via CO2 hydrogenation over Cu/ZnO catalysts [J]. Catalysis Science & Technology, 2015, 5(2): 869-881.
CHOI H, OH S, TRAN S B T, et al. Size-controlled model Ni catalysts on Ga2O3 for CO2 hydrogenation to methanol [J]. Journal of Catalysis, 2019, 376: 68-76.
ZHANG L C, LIU X Y, WANG H W, et al. Size-dependent strong metal-support interaction in Pd/ZnO catalysts for hydrogenation of CO2 to methanol [J]. Catalysis Science & Technology, 2021, 11(13): 4398-4405.
YU J H, LIU S, MU X L, et al. Cu-ZrO2 catalysts with highly dispersed Cu nanoclusters derived from ZrO2@HKUST-1 composites for the enhanced CO2 hydrogenation to methanol [J]. Chemical Engineering Journal, 2021, 419: 129656.
孔垂旸, 张颖. 高分散负载型Cu-In2O3催化剂的制备及其CO2加氢制甲醇性能研究[J]. 化工设计通讯, 2022, 48(4): 10-12.
KONG C S, ZHANG Y. Preparation of highly dispersed Cu-In2O3 catalyst and its performance of CO2 hydrogenation to methanol [J]. Chemical Engineering Design Communications, 2022, 48(4): 10-12.
WANG X L, ALABSI M H, ZHENG P, et al. PdCu supported on dendritic mesoporous CexZr1-xO2 as superior catalysts to boost CO2 hydrogenation to methanol [J]. Journal of Colloid and Interface Science, 2022, 611: 739-751.
罗晶, 刘晨龙, 徐成华, 等. 均苯三甲酸辅助合成CuZnAlZr催化CO2加氢制甲醇[J]. 低碳化学与化工, 2024, 49(1): 33-41.
LUO J, LIU C L, XU C H, et al. 1, 3, 5-Benzenetricarboxylic acid assisted synthesis of CuZnAlZr catalystsfor CO2 hydrogenation to methanol [J]. Low-Carbon Chemistry and Chemical Engineering, 2024, 49(1): 33-41.
GUNDRY P M, TOMPKINS F C. Chemisorption of gases on metals [J]. Chemical Society, 1960, 14(3): 257-291.
HUSSAIN I, JALIL A A, FATAH N A A, et al. A highly competitive system for CO methanation over an active metal-free fibrous silica mordenite via in-situ ESR and FTIR studies [J]. Energy Conversion and Management, 2020, 211: 112754.
HUANG C J, WU Z X, LUO H, et al. CO2 hydrogenation to methanol over PdZnZr solid solution: Effects of the PdZn alloy and oxygen vacancy [J]. ACS Applied Energy Materials, 2021, 4(9): 9258-9266.
ZHANG C C, WANG L T, ETIM U J, et al. Oxygen vacancies in Cu/TiO2 boost strong metal-support interaction and CO2 hydrogenation to methanol [J]. Journal of Catalysis, 2022, 413: 284-296.
REN Q X, YANG K, LIU F, et al. Role of the structure and morphology of zirconia in ZnO/ZrO2 catalyst for CO2 hydrogenation to methanol [J]. Molecular Catalysis, 2023, 547: 113280.
DANG S S, QIN B, YANG Y, et al. Rationally designed indium oxide catalysts for CO2 hydrogenation to methanol with high activity and selectivity [J]. Science Advances, 2020, 6(25): eaaz2060.
XIONG S L, LU Z, SHEN C Y, et al. ZrO2 promoted Ru/In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. Chemical Engineering Science, 2023, 282: 119246.
ZHANG Z T, SHEN C Y, SUN K H, et al. Improvement in the activity of Ni/In2O3 with the addition of ZrO2 for CO2 hydrogenation to methanol [J]. Catalysis Communications, 2022, 162: 106386.
CHEN H, CUI H S, LV Y, et al. CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts: Effects of ZnO morphology and oxygen vacancy [J]. Fuel, 2022, 314: 123035.
SHI Y C, SU W G, WEI X Y, et al. ZnO-In2O3 solid solution hollow tube improved CO2 hydrogenation to methanol via the formate route [J]. Fuel, 2024, 366: 131394.
JIANG F, WANG S S, LIU B, et al. Insights into the influence of CeO2 crystal facet on CO2 hydrogenation to methanol over Pd/CeO2 catalysts [J]. ACS Catalysis, 2020, 10(19): 11493-11509.
JIANG F, WANG S S, XU Y B, et al. Catalytic activity for CO2 hydrogenation is linearly dependent on generated oxygen vacancies over CeO2-supported Pd catalysts [J]. ChemCatChem, 2022, 14(16): e202200422.
KHOBRAGADE R, ROSKARIC M, ZERJAV G, et al. Exploring the effect of morphology and surface properties of nanoshaped Pd/CeO2 catalysts on CO2 hydrogenation to methanol [J]. Applied Catalysis A: General, 2021, 627: 118394.
TRAN S B, CHOI H, OH S, et al. Influence of support acidity of Pt/Nb2O5 catalysts on selectivity of CO2 hydrogenation [J]. Catalysis Letters, 2019, 149: 2823-2835.
GUO T, GUO Q, LI S Z, et al. Effect of surface basicity over the supported Cu-ZnO catalysts on hydrogenation of CO2 to methanol [J]. Journal of Catalysis, 2022, 407: 312-321.
WANG X H, ZHAO J X, LI Y, et al. Effects of surface acid-base properties of ZrO2 on the direct synthesis of DMC from CO2 and methanol: A combined DFT and experimental study [J]. Chemical Engineering Science, 2021, 229: 116018.
戴文华, 辛忠. Si掺杂对Cu/ZrO2催化CO2加氢制甲醇性能的影响[J]. 化工学报, 2022, 73(8): 3586-3596.
DAI W H, XIN Z. Effect of Si-doped Cu/ZrO2 on the performance of catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2022, 73(8): 3586-3596.
STANGELAND K, NAVARRO H H, HUYNH H L, et al. Tuning the interfacial sites between copper and metal oxides (Zn, Zr, In) for CO2 hydrogenation to methanol [J]. Chemical Engineering Science, 2021, 238: 116603.
HAORAN L I, ZHIQING Y U, HUANG W, et al. Effect of Ce modification on the performance of CuLDH catalyst for CO2 hydrogenation to methanol [J]. Journal of Fuel Chemistry and Technology, 2024, 52(2): 159-170.
GOODMAN E D, ASUNDI A S, HOFFMAN A S, et al. Monolayer support control and precise colloidal nanocrystals demonstrate metal-support interactions in heterogeneous catalysts [J]. Advanced Materials, 2021, 33(44): 2104533.
WANG Y H, KATTEL S, GAO W G, et al. Exploring the ternary interactions in Cu-ZnO-ZrO2 catalysts for efficient CO2 hydrogenation to methanol [J]. Nature Communications, 2019, 10(1): 1166.
RUI N, SUN K H, SHEN C Y, et al. Density functional theoretical study of Au4/In2O3 catalyst for CO2 hydrogenation to methanol: The strong metal-support interaction and its effect [J]. Journal of CO2 Utilization, 2020, 42: 101313.
ZHU J D, CIOLCA D, LIU L, et al. Flame synthesis of Cu/ZnO-CeO2 catalysts: Synergistic metal-support interactions promote CH3OH selectivity in CO2 hydrogenation [J]. ACS Catalysis, 2021, 11(8): 4880-4892.
WANG S, SONG L X, QU Z P. Cu/ZnAl2O4 catalysts prepared by ammonia evaporation method: Improving methanol selectivity in CO2 hydrogenation via regulation of metal-support interaction [J]. Chemical Engineering Journal, 2023, 469: 144008.
YUAN X H, PU T C, GU M W, et al. Strong metal-support interactions between nickel and iron oxide during CO2 hydrogenation [J]. ACS Catalysis, 2021, 11(19): 11966-11972.
RUI N, WANG X L, DENG K X, et al. Atomic structural origin of the high methanol selectivity over In2O3-metal interfaces: Metal-support interactions and the formation of a InOx over layer in Ru/In2O3 catalysts during CO2 hydrogenation [J]. ACS Catalysis, 2023, 13(5): 3187-3200.
LIU H R, HUANG W B, YU Z Q, et al. High-performance CuMgAl catalysts derived from hydrotalcite for CO2 hydrogenation to methanol: Effects of Cu-MgO interaction [J]. Molecular Catalysis, 2024, 558: 114002.
CHOI E J, LEE Y H, LEE D W, et al. Hydrogenation of CO2 to methanol over Pd-Cu/CeO2 catalysts [J]. Molecular Catalysis, 2017, 434: 146-153.
WANG G, MAO D S, GUO X M, et al. Enhanced performance of the CuO-ZnO-ZrO2 catalyst for CO2 hydrogenation to methanol by WO3 modification [J]. Applied Surface Science, 2018, 456: 403-409.
ZHONG C L, GUO X M, MAO D S, et al. Effects of alkaline-earth oxides on the performance of a CuO-ZrO2 catalyst for methanol synthesis via CO2 hydrogenation [J]. RSC Advances, 2015, 5(65): 52958-52965.
XABA B S, MAHOMED A S, FRIEDRICH H B. The effect of CO2 and H2 adsorption strength and capacity on the performance of Ga and Zr modified Cu-Zn catalysts for CO2 hydrogenation to methanol [J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104834.
HENGNE A M, SAMAL A K, ENAKONDA L R, et al. Ni-Sn-supported ZrO2 catalysts modified by indium for selective CO2 hydrogenation to methanol [J]. ACS Omega, 2018, 3(4): 3688-3701.
DONG X S, MA S X, GAO P. The development of uncalcined Cu-based catalysts by liquid reduction method for CO2 hydrogenation to methanol [J]. Catalysis Letters, 2023, 153(6): 1696-1707.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构