浏览全部资源
扫码关注微信
1.中国华电科工集团有限公司,北京 100711
2.华北电力大学 新能源发电国家工程研究中心,北京 102206
张中亮(1979—),本科,高级工程师,研究方向为化学化工,E-mail:zhangzl@chec.com.cn。
胡斌(1992—),博士,副教授,研究方向为生物质能、氢能及碳减排,E-mail:binhu@ncepu.edu.cn。
纸质出版日期:2024-09-25,
收稿日期:2024-02-29,
修回日期:2024-03-26,
移动端阅览
张中亮,刘吉,马宗虎等.Ni/ZrO2-Al2O3催化剂催化沼气蒸汽重整制氢性能研究[J].低碳化学与化工,2024,49(09):19-25.
ZHANG Zhongliang,LIU Ji,MA Zonghu,et al.Study on catalytic performance of Ni/ZrO2-Al2O3 catalyst in biogas steam reforming for hydrogen production[J].Low-carbon Chemistry and Chemical Engineering,2024,49(09):19-25.
张中亮,刘吉,马宗虎等.Ni/ZrO2-Al2O3催化剂催化沼气蒸汽重整制氢性能研究[J].低碳化学与化工,2024,49(09):19-25. DOI: 10.12434/j.issn.2097-2547.20240070.
ZHANG Zhongliang,LIU Ji,MA Zonghu,et al.Study on catalytic performance of Ni/ZrO2-Al2O3 catalyst in biogas steam reforming for hydrogen production[J].Low-carbon Chemistry and Chemical Engineering,2024,49(09):19-25. DOI: 10.12434/j.issn.2097-2547.20240070.
沼气蒸汽重整是重要的制氢方式,开发高效稳定的催化剂是其规模化应用的重要环节。基于此,采用连续浸渍法制备了一系列基于ZrO
2
-Al
2
O
3
复合载体的Ni基催化剂,对其进行了沼气蒸汽重整制氢催化性能测试。利用N
2
吸/脱附、XRD等表征方法,分析了催化剂的织构性质、晶相组成等。探究了催化剂的物理结构和化学性质对沼气蒸汽重整制氢的影响机制,并探讨了焙烧温度与金属助剂Fe对催化剂催化性能的影响。结果表明,在700 °C、空速12000 h
-1
条件下,焙烧温度为550 °C制得的Ni/ZrO
2
-Al
2
O
3
表现出突出的催化性能,CH
4
转化率和H
2
产率分别稳定在89.94%和81.49%。ZrO
2
-Al
2
O
3
复合载体相比于Al
2
O
3
载体增大了催化剂的比表面积,促进了平均粒径较小的Ni在载体表面的高度分散,进而提高了催化剂的催化沼气蒸汽重整制氢性能。焙烧温度可以调控催化剂的比表面积和孔体积,焙烧温度为550 °C制得的Ni/ZrO
2
-Al
2
O
3
的比表面积和孔体积比焙烧温度为700 °C制得的Ni/ZrO
2
-Al
2
O
3
大。Fe与ZrO
2
的耦合改性提升了催化剂的还原性能,生成了更多高活性Ni
0
,有利于甲烷干重整制氢反应的发生,调控了气体产物中的
<math id="M1"><msub><mrow><mi>n</mi></mrow><mrow><msub><mrow><mi mathvariant="normal">H</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66536403&type=
3.30200005
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66536416&type=
3.64066648
/n
CO
。
Biogas steam reforming is one important way for hydrogen production
and the developm
ent of efficient and stable catalysts is the key for its large-scale application. Based on this
a series of Ni-based catalysts based on ZrO
2
-Al
2
O
3
composite support were prepared by continuous impregnation method
and the catalytic performances for hydrogen production by biogas steam reforming were tested. The texture properties and crystal phase compositions of catalysts were analyzed by characterization methods such as N
2
adsorption/desorption and XRD. The influence mechanisms of the physical structure and chemical properties of catalysts on their catalytic performances of biogas steam reforming for hydrogen production were studied. The effects of calcination temperatures and metal promotor Fe on the catalytic performances of catalysts were also discussed. The results show that Ni/ZrO
2
-Al
2
O
3
exhibits outstanding catalytic performance for hydrogen production at 700 ℃ and gas volume space velocity of 12000 h
-1
with CH
4
conversion rate of 89.94% and H
2
yield of 81.49%. Compared with Al
2
O
3
support
ZrO
2
-Al
2
O
3
composite support increases the specific surface area of catalysts
promotes the high dispersion of small particle size Ni on the surface of the support
and thus improves the catalytic performances of catalysts in biogas steam reforming for hydrogen production. The calcination temperature can regulate the specific surface area and pore volume of catalysts. The specific surface area and pore volume of Ni/ZrO
2
-Al
2
O
3
calcined at 550 ℃ are larger than those of Ni/ZrO
2
-Al
2
O
3
calcined at 700 ℃. The coupled modification of Fe and ZrO
2
improves the reduction performance of catalysts
and more highly active Ni
0
is formed
which is conducive to the occurrence of methane dry reforming for hydrogen production
and the
<math id="M2"><msub><mrow><mi>n</mi></mrow><mrow><msub><mrow><mi mathvariant="normal">H</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66536419&type=
3.30200005
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66536412&type=
3.64066648
/n
CO
in the gas product is also modified.
沼气重整制氢ZrO2-Al2O3复合载体Ni基催化剂
biogasreforming for hydrogen productionZrO2-Al2O3 composite supportNi-based catalyst
BRAGA L B, SILVEIRA J L, SILVA M E D, et al. Hydrogen production by biogas steam reforming: A technical, economic and ecological analysis [J]. Renewable and Sustainable Energy Reviews, 2013, 28: 166-173.
MADEIRA J G F, BOLOY R A M, DELGADO A R S, et al. Ecological analysis of hydrogen production via biogas steam reforming from cassava flour processing wastewater [J]. Journal of Cleaner Production, 2017, 162: 709-716.
ZHAO X, JOSEPH B, KUHN J, et al. Biogas reforming to syngas: A review [J]. iScience, 2020, 23(5): 101082.
万子岸, 高飞, 周华群, 等. 甲烷水蒸汽重整反应制氢催化剂的研究进展[J]. 现代化工, 2016, 36(5): 48-52.
WANG Z A, GAO F, ZHOU H Q, et al. Research progress of catalysts for hydrogen production via methane steam reforming [J]. Modern Chemical Industry, 2016, 36(5): 48-52.
ZHANG H T, SUN Z X, HU Y H. Steam reforming of methane: Current states of catalyst design and process upgrading [J]. Renewable and Sustainable Energy Reviews, 2021, 149: 111330.
高鑫华, 沈卫华, 方云进. Ni基催化剂在甲烷水蒸气重整中的抗积碳研究[J]. 现代化工, 2022, 42(3): 114-117+122.
GAO X H, SHEN W H, FANG Y J. Study on carbon deposition resistance of coated Ni-based catalyst in steam reforming of methane [J]. Modern Chemical Industry, 2022, 42(3): 114-117+122.
黄兴, 吕政国, 李珍珍, 等. 甲烷干法重整催化剂抗积碳性能的研究进展[J]. 低碳化学与化工, 2023, 48(2): 14-22.
HUANG X, LV Z G, LI Z Z, et al. Research progress on carbon deposition resistance of catalysts for dry reforming of methane [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(2): 14-22.
苏通明, 王传棽, 宫博, 等. 甲烷干重整Ni基催化剂上积碳调控的研究进展[J]. 低碳化学与化工, 2023, 48(3): 1-10.
SU T M, WANG C Q, GONG B, et al. Research progress in regulation of carbon deposits on Ni-based catalysts for dry reforming of methane [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(3): 1-10.
XU J, ZHOU W, LI Z, et al. Biogas reforming for hydrogen production over nickel and cobalt bimetallic catalysts [J]. International Journal of Hydrogen Energy, 2009, 34(16): 6646-6654.
DAN M, MIHET M, BARBU-TUDORAN L, et al. Biogas upgrading to syngas by combined reforming using Ni/CeO2-Al2O3 with bimodal pore structure [J]. Microporous and Mesoporous Materials, 2022, 341:112082.
詹国武, 李鑫, 李瑛, 等. ZrO2-Al2O3复合氧化物对负载Ni基催化剂合成甲烷的性能影响[J]. 浙江化工, 2014, 45(12): 33-37.
ZHAN G W, LI X, LI Y, et al. Effect of ZrO2-Al2O3 mixed oxides on the properties of Ni/ZrO2-Al2O3 for CO methanation [J]. Zhejiang Chemical Industry, 2014, 45(12): 33-37.
SÁNCHEZ-SÁNCHEZ M C, NAVARRO R M, FIERRO J L G. Ethanol steam reforming over Ni/MxOy-Al2O3 (M = Ce, La, Zr and Mg) catalysts: Influence of support on the hydrogen production [J]. International Journal of Hydrogen Energy, 2007, 32(10/11): 1462-1471.
IRIONDO A, CAMBRA J F, GVEMEZ M B, et al. Effect of ZrO2 addition on Ni/Al2O3 catalyst to produce H2 from glycerol [J]. International Journal of Hydrogen Energy, 2012, 37(8): 7084-7093.
IGLESIAS I, FORTI M, BARONETTI G, et al. Zr-enhanced stability of ceria based supports for methane steam reforming at severe reaction conditions [J]. International Journal of Hydrogen Energy, 2019, 44(16): 8121-8132.
SEPEHRI S, REZAEI M, GARBARINO G, et al. Preparation and characterization of mesoporous nanocrystalline La-, Ce-, Zr-, Sr-containing Ni/Al2O3 methane autothermal reforming catalysts [J]. International Journal of Hydrogen Energy, 2016, 41(21): 8855-8862.
ABDULLAH N, AINIRAZALI N, ELLAPAN H. Structural effect of Ni/SBA-15 by Zr promoter for H2 production via methane dry reforming [J]. International Journal of Hydrogen Energy, 2021, 46(48): 24806-24813.
XU J K, ZHOU W, LI Z J, et al. Biogas reforming for hydrogen production over a Ni-Co bimetallic catalyst: Effect of operating conditions [J]. International Journal of Hydrogen Energy, 2010, 35(23): 13013-13020.
HE L M, HUA S, YIN X F, et al. Promoting effects of Fe-Ni alloy on co-production of H2 and carbon nanotubes during steam reforming of biomass tar over Ni-Fe/α-Al2O3 [J]. Fuel, 2020, 276: 118116.
RAHEMI N, HAGHIGHI M, BABALUO A A, et al. The effect of the calcination temperature on the physicochemical properties and catalytic activity in the dry reforming of methane over a Ni-Co/Al2O3-ZrO2 nanocatalyst prepared by a hybrid impregnation-plasma method [J]. Catalysis Science & Technology, 2013, 3(12): 3183-3191.
RAHEMI N, HAGHIGHI M, BABALUO A A, et al. Synthesis and physicochemical characterizations of Ni/Al2O3-ZrO2 nanocatalyst prepared via impregnation method and treated with non-thermal plasma for CO2 reforming of CH4 [J]. Journal of Industrial and Engineering Chemistry, 2013, 19(5): 1566-1576.
ZHAO Q, WANG Y, WANG Y N, et al. Steam reforming of CH4 at low temperature on Ni/ZrO2 catalyst: Effect of H2O/CH4 ratio on carbon deposition [J]. International Journal of Hydrogen Energy, 2020, 45(28): 14281-14292.
BINTI R R D, MOHAMMAD Y, BAWADI A. Dry reforming of methane over Ni-based catalysts: Effect of ZrO2 and MgO addition as support [J]. Materials Letters: X, 2021, 12: 100095.
HUANG X H, JI Y J, WEI T, et al. High performance and stable mesoporous MgO-ZrO2 supported Ni catalysts for dry reforming of methane [J]. Current Research in Green and Sustainable Chemistry, 2021, 4: 100183-100190.
SAJJADI S M, HAGHIGHI M, RAHMANI F. Sol-gel synthesis of Ni-Co/Al2O3-MgO-ZrO2 nanocatalyst used in hydrogen production via reforming of CH4/CO2 greenhouse gases [J]. Journal of Natural Gas Science and Engineering, 2015, 22: 9-21.
宫立倩, 陈吉祥, 邱业君, 等. 焙烧温度对甲烷催化部分氧化Ni/MgO-Al2O3催化剂结构和性能的影响[J]. 燃料化学学报, 2005, 33(2): 224-228.
GONG L Q, CHEN J X, QIU Y J, et al. Effects of calcinations temperature on structure and catalytic performance of Ni/MgO-Al2O3 catalysts for partial oxidation of methane [J]. Journal of Fuel Chemistry and Technology, 2005, 33(2): 224-228.
李涛, 王胜, 高典楠, 等. 制备条件对Ru/Ce0.8Zr0.2O2催化剂上CO2甲烷化反应性能的影响[J]. 燃料化学学报, 2014, 42(12): 1440-1446.
LI T, WANG S, GAO D N, et al. Effect of support calcination temperature on the catalytic properties of Ru/Ce0.8Zr0.2O2 for methanation of carbon dioxide [J]. Journal of Fuel Chemistry and Technology, 2014, 42(12): 1440-1446.
GUILHAUME N, BIANCHI D, WANDAWA R A, et al. Study of CO2 and H2O adsorption competition in the combined dry/steam reforming of biogas [J]. Catalysis Today, 2020, 375: 282-289.
赵云莉. 甲烷重整制氢镍基催化剂制备及活性评价研究[D]. 太原: 太原理工大学, 2009.
ZHAO Y L. Study of methane catalytic reforming to hydrogen on nickel-based catalysts [D]. Taiyuan: Taiyuan University of Technology, 2009.
DAN M, MIHET M, BARBU-TUDORAN L, et al. Biogas upgrading to syngas by combined reforming using Ni/CeO2-Al2O3 with bimodal pore structure [J]. Microporous and Mesoporous Materials, 2022, 341: 112082.
KOO K Y, LEE S H, JUNG U H, et al. Syngas production via combined steam and carbon dioxide reforming of methane over Ni-Ce/MgAl2O4 catalysts with enhanced coke resistance [J]. Fuel Processing Technology, 2014, 119: 151-157.
LI P, PARK Y H, MOOM D J, et al. Carbon deposition onto Ni-based catalysts for combined steam/CO2 reforming of methane [J]. Journal of Nanoscience and Nanotechnology, 2016, 16(2): 1562-1566.
SÁNCHEZ-BASTARDO N, SCHLÖGL R, RULAND H. Methane pyrolysis for zero-emission hydrogen production: A potential bridge technology from fossil fuels to a renewable and sustainable hydrogen economy [J]. Industrial & Engineering Chemistry Research, 2021, 60(22): 9-21.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构