浏览全部资源
扫码关注微信
1.太原理工大学 化学工程与技术学院,山西 太原 030024
2.山西省超级计算中心,山西 吕梁 033015
陈鹏(1998—),硕士研究生,研究方向为C1化学与化工,E-mail:13262199818@163.com。
孟园园(1989—),博士,讲师,研究方向为C1化学与化工, E-mail:mengyuanyuan@tyut.edu.cn。
纸质出版日期:2024-11-25,
收稿日期:2024-02-26,
修回日期:2024-03-21,
移动端阅览
陈鹏,孟园园,丁传敏等.OH*对Ni(111)上甲烷部分氧化成CO影响的理论计算[J].低碳化学与化工,2024,49(11):28-35.
CHEN Peng,MENG Yuanyuan,DING Chuanmin,et al.Theoretical calculation of effect of OH* on methane partial oxidation to CO on Ni(111)[J].Low-carbon Chemistry and Chemical Engineering,2024,49(11):28-35.
陈鹏,孟园园,丁传敏等.OH*对Ni(111)上甲烷部分氧化成CO影响的理论计算[J].低碳化学与化工,2024,49(11):28-35. DOI: 10.12434/j.issn.2097-2547.20240067.
CHEN Peng,MENG Yuanyuan,DING Chuanmin,et al.Theoretical calculation of effect of OH* on methane partial oxidation to CO on Ni(111)[J].Low-carbon Chemistry and Chemical Engineering,2024,49(11):28-35. DOI: 10.12434/j.issn.2097-2547.20240067.
为促进我国能源结构转型和缓解能源短缺压力,将储量丰富的天然气(甲烷)部分氧化成合成气具有重要的现实意义。该过程常用的催化剂为Ni基催化剂,其存在易积炭失活的问题。深入研究Ni基催化剂表面的催化机理有助于解决该问题。基于密度泛函理论的第一性原理计算方法,确定了甲烷部分氧化中相关物种在Ni(111)上最有利的吸附构型,并通过二聚体方法搜索了反应过程中各基元反应的过渡态,分析了Ni(111)上甲烷部分氧化生成CO的整个过程。结果表明,CH*在Ni(111)上的吸附能为6.98 eV,CH
2
*脱氢生成CH*的活化能为0.28 eV,远低于CH*脱氢的活化能(1.29 eV),说明CH*可在Ni表面大量存在,并且其变化可影响整个反应途径。在甲烷部分氧化生成CO的整个过程中,OH*氧化CH*生成CO*时的活化能为1.48 eV,较C*被O*直接氧化生成CO的活化能(1.59 eV)低0.11 eV,因此形成OH*更有利于CO的生成。在CH*被OH*氧化生成CO*的过程中,经历了CHOH* → COH* → CO*的转化过程,整个转化过程的活化能为0.91 eV;而CHOH* → CHO* → CO*的转化过程的活化能为0.73 eV,因此CHOH*更
倾向于脱氢生成CHO*进而生成CO*,甲烷部分氧化生成CO*的最佳反应路径为CH
4
*
→ CH
3
*
→ CH
2
*→ CH* + OH* → CHOH* → CHO* → CO*。
In order to promote the transformation of China’s energy structure and alleviate the pressure of energy shortage
it is of great practical significance to partially oxidize natural gas (methane) with abundant reserves into syngas. The catalysts commonly used in this process is the Ni-based catalysts
which are prone to carbon deposition and inactivation. In-depth study of the catalytic mechanism on the surface of Ni-based catalysts can help to solve this problem. Based on the first-principles calculation method of density functional theory
the most favorable adsorption configuration of related species on Ni(111) in methane partial oxidation was determined
and the transition states of each element reaction in the reaction process were searched by the dimer method
and the whole process of methane partial oxidation on Ni(111) to CO was analyzed. The results show that the adsorption energy of CH* on Ni(111) is 6.98 eV
and the activation energy of CH
2
* dehydrogenation to CH* is 0.28 eV
which is much lower than that of CH* dehydrogenation (1.29 eV)
indicating that CH* can exist in large quantities on the Ni surface
and its change can affect the whole reaction pathway. In the whole process of methane partial oxidation to CO
the activation energy of CH* to CO* oxidation by OH* is 1.48 eV
which is 0.11 eV lower than that of C* direct oxidation by O* to CO (1.59 eV)
so the formation of OH* is more conducive to CO formation. In the process of oxidation of CH* by OH* to form CO*
the conversion process of CHOH* → COH* → CO* is undertaken
and the activation energy of the whole conversion process is 0.91 eV. The activation energy of the conversion procces (CHOH* → CHO* → CO*) is 0.73 eV
so CHOH* is more inclined to dehydrogenation to form CHO* and then CO*
and the optimal reaction path of
methane partial oxidation to CO* is CH
4
* → CH
3
* → CH
2
*→ CH* + OH* → CHOH* → CHO* → CO*.
OH*甲烷部分氧化Ni(111)密度泛函理论
OH*methane partial oxidationNi(111)density functional theory
韩旭. 我国煤气层的开发现状及发展策略分析[J]. 中国煤层气, 2018, 15(3): 46-47.
HAN X. Status quo of CBM development and development strategy analysis in China [J]. China Coalbed Methane, 2018, 15(3): 46-47.
PASHCHENKO D. Numerical study of steam methane reforming over a pre-heated Ni-based catalyst with detailed fluid dynamics [J]. Fuel, 2019, 236: 686-694.
罗申国, 宋沛鑫, 冯大伟. 我国煤层气开发利用现状及综合利用途径分析[J]. 煤炭加工与综合利用, 2020, (7): 83-87.
LUO S G, SONG P X, FENG D W. Analysis of current situation and comprehensive utilization approaches of development and utilization of coalbed methane in China [J]. Coal Processing and Comprehensive Utilization, 2020, (7): 83-87.
ZHOU Y Y, WANG H P, LIU X C, et al. Direct piezocatalytic conversion of methane into alcohols over hydroxyapatite [J]. Nano Energy, 2021, 79(1): 105449.
SIANG T J, JALIL A A, LIEW S Y, et al. A review on state-of-the-art catalysts for methane partial oxidation to syngas production [J]. Catalysis Reviews-Science and Engineering, 2022, 66(4): 1-57.
CAO H L, XU R, TANG X J, et al. Microchannel reactors for Fischer-Tropsch synthesis: Experimental investigation and mathematical modeling [J]. Chinese Journal of Chemical Engineering, 2023, 64: 224-240.
ATAALLAH, SARI. A theoretical study on high pressure partial oxidation of methane in Rh-washcoated monoliths [J]. Chemical Engineering Research & Design, 2017, 121: 134-148.
SIANG T J, JALIL A A, HAMID M Y S, et al. Role of oxygen vacancies in dendritic fibrous M/KCC-1 (M = Ru, Pd, Rh) catalysts for methane partial oxidation to H2-rich syngas production [J]. Fuel, 2020, 278: 118360.
ERDHELYI A. Catalytic reaction of carbon dioxide with methane on supported noble metal catalysts [J]. Catalysts, 2021, 11(2): 159.
CHRISTIAN ENGER B, LØDENG R, HOLMEN A. A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts [J]. Applied Catalysis A: General, 2008, 346(1/2): 1-27.
OSMAN A I, MEUDAL J, LAFFIR F, et al. Enhanced catalytic activity of Ni on η-Al2O3 and ZSM-5 on addition of ceria zirconia for the partial oxidation of methane [J]. Applied Catalysis B: Environmental, 2017, 212(8): 68-79.
HASNAIN S M W U, FAROOQI A S, AYODELE B V, et al. Advancements in Ni and Co-based catalysts for sustainable syngas production via bi-reforming of methane: A review of recent advances [J]. Journal of Cleaner Production, 2024, 434: 139904.
TULENIN Y P, SINEV M Y, SAVKIN V V, et al. Dynamic behaviour of Ni-containing catalysts during partial oxidation of methane to synthesis gas [J]. Catalysis Today, 2004, 147: 155-159.
HU J B, YU C L, ZHOU X C. Research progress of carbon deposition on catalysts during the partial oxidation of methane [J]. Nonferrous Metals Science and Engineering, 2012, 3(2): 5-11.
YANG H, ZHANG Z, HE Y S, et al. Study of Ni catalysts with different Al2O3 supports in the partial oxidation of methane reaction [J]. Industrial & Engineering Chemistry Research, 2023, 62(31): 12120-12132.
WATWE R M, BENGAARD H S, ROSTRUP-NIELSEN J R, et al. Theoretical studies of stability and reactivity of CHx species on Ni(111) [J]. Journal of Catalysis, 2000, 189: 16-30.
PSOFOGIANNAKIS G, ST-AMANT A, TERNAN M. Methane oxidation mechanism on Pt(111): A cluster model DFT study [J]. Journal of Physical Chemistry B, 2006, 110(48): 24593-24605.
ZHANG J D, NIU J T, LIU H Y, et al. Study on the activation mechanism of O-enhanced methane adsorbed on Pd-Cu catalyst [J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 987-995.
OU Z L, RAN J Y, QIU H Y, et al. Understanding the role of Co segregation on the carbon deposition over Ni-Co bimetal catalyst in dry reforming of methane [J]. Separation and Purification Technology, 2024, 333: 125868.
WANG X J, PAN W T, YUAN X Q, et al. Density-functional theory investigation into the role of Fe doping for improving the carbon resistance over Ni3Fe(111) surface in methane reforming with CO2 [J]. Applied Surface Science, 2022, 574(4): 151661.
BLAYLOCK D W, OGURA T, GREEN W H. Computational investigation of thermochemistry and kinetics of steam methane reforming on Ni(111) under realistic conditions [J]. The Journal of Physical Chemistry C, 2009, (12): 113.
BHOLA K, TRINH Q T, LIU D, et al. Insights into the role of water and surface OH species in methane activation on copper oxide: A combined theoretical and experimental study [J]. Catalysis Science & Technology, 2023, 13(23): 6764-6779.
CHEN Y, VLACHOS D G. Density functional theory study of methane oxidation and reforming on Pt(111) and Pt(211) [J]. Industrial & Engineering Chemistry Research, 2012, 51(38): 12244-12252.
NIU J T, WANG Y L, QI Y Y, et al. New mechanism insights into methane steam reforming on Pt/Ni from DFT and experimental kinetic study [J]. Fuel, 2020, 266: 117143.
HIBBITTS D, NEUROCK M. Promotional effects of chemisorbed oxygen and hydroxide in the activation of C—H and O—H bonds over transition metal surfaces [J]. Surface Science, 2016, 650: 210-220.
LIANG W, WHANGBO M H. Conductivity anisotropy and structural phase transition in covellite CuS [J]. Solid State Communications, 1993, 85(5): 405-408.
KRESSE G G, FURTHMULLER J J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54: 11169.
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865-3868
ZHU Y A, ZHOU X G, CHEN D, et al. First principles study of C adsorption and diffusion on the surfaces and in the subsurfaces of nonreconstructed and reconstructed Ni(100) [J]. Journal of Physical Chemistry C, 2007, 111(8): 3447-3453.
STOLBOV S, HONG S, KARA A, et al. Origin of the C-induced p4g reconstruction of Ni(001) [J]. Physical Review B, 2005, 72(15): 155423.
HEYDEN A, BELL A T, KEIL F J. Efficient methods for finding transition states in chemical reactions: Comparison of improved dimer method and partitioned rational function optimization method [J]. Journal of Chemical Physics, 2005, 123(22): 224101.
BEEBE T P, GOODMAN D W, KAY B D, et al. Kinetics of the activated dissociative adsorption of methane on the low index planes of nickel single crystal surfaces [J]. The Journal of Chemical Physics, 1987, 87(4): 2305-2315.
SHUSTOROVICH E, SELLERS H. The UBI-QEP method: A practical theoretical approach to understanding chemistry on transition metal surfaces [J]. Surface Science Reports, 1998, 31(1/2/3): 1-119.
WAYNE B D, OGURA T, H GREEN W, et al. Computational investigation of thermochemistry and kinetics of steam methane reforming on Ni(111) under realistic conditions [J]. The Journal of Physical Chemistry C, 2009, 113(12): 4898-4908.
NAVE S, TIWARI A K, JACKSON B. Methane dissociation and adsorption on Ni(111), Pt(111), Ni(100), Pt(100), and Pt(110)-(1 × 2): Energetic study [J]. The Journal of Chemical Physics, 2010, 132(5): 054705.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构