浏览全部资源
扫码关注微信
1. 西南石油大学 新能源与材料学院,四川 成都 610500
2. 西南石油大学 油气藏地质及开发工程国家重点实验室,四川 成都 610500
黄泽皑(1989—),博士,副教授,研究方向为天然气高值利用,E-mail:zeai.huang@swpu.edu.cn。
周莹(1981—),博士,教授,研究方向为新能源与油气资源协同利用,E-mail:yzhou@swpu.edu.cn。
纸质出版日期:2024-09-25,
收稿日期:2024-02-23,
修回日期:2024-03-28,
移动端阅览
黄泽皑,周芸霄,张魁魁等.甲烷裂解制氢和碳材料工艺研究进展[J].低碳化学与化工,2024,49(09):1-11.
HUANG Zeai,ZHOU Yunxiao,ZHANG Kuikui,et al.Research progress on methane pyrolysis process for hydrogen and carbon materials[J].Low-carbon Chemistry and Chemical Engineering,2024,49(09):1-11.
黄泽皑,周芸霄,张魁魁等.甲烷裂解制氢和碳材料工艺研究进展[J].低碳化学与化工,2024,49(09):1-11. DOI: 10.12434/j.issn.2097-2547.20240064.
HUANG Zeai,ZHOU Yunxiao,ZHANG Kuikui,et al.Research progress on methane pyrolysis process for hydrogen and carbon materials[J].Low-carbon Chemistry and Chemical Engineering,2024,49(09):1-11. DOI: 10.12434/j.issn.2097-2547.20240064.
双碳背景下,化石能源的清洁高效利用已成为能源结构转型中的重要发展方向。甲烷作为最清洁的化石能源之一,对其进行清洁高效利用被视为能源转型中具备良好发展前景的关键技术之一,受到了广泛关注。甲烷裂解制氢工艺具有在制备高纯度H
2
和碳材料的同时不直接产生CO
2
的优点。总结了流化床中催化甲烷裂解、等离子体甲烷裂解和熔融介质法甲烷裂解这3类典型的甲烷裂解制氢工艺,并围绕工艺的原理、优缺点以及研究进展等方面展开了介绍。以上3类工艺中,流化床中催化甲烷裂解制氢所需能量最少,但催化剂易积碳导致反应不可持续进行,且碳材料与催化剂的分离难度大,影响下游使用。等离子体甲烷裂解制氢的转化率高,但需要大量的能量输入。熔融介质法甲烷裂解制氢的能耗较低,碳材料漂浮在熔融介质表面,不影响反应的持续进行,且易于分离和收集,但高温熔融介质对反应器材质的要求较高,纯化碳材料的成本也会影响该工艺工业化的经济性。结合可再生能源是未来实现清洁高效的甲烷裂解制氢的发展趋势,通过利用太阳能、风能等可再生能源来提供裂解过程中所需的能量,可减少对传统能源的依
赖。从目前的研究和发展趋势来看,结合可再生能源的熔融介质法甲烷裂解制氢工艺有望成为甲烷裂解制氢和碳材料的关键工艺。
Under the goals to reach carbon peaking and carbon neutrality
the clean and efficient utilization of fossil fuels has become a crucial aspect of the energy transition. Methane as one of the cleanest fossil energies
has been widely regarded as a key technology with good development prospects in energy transition for high-value and clean utilization. Methane pyrolysis for hydrogen process has the advantages of producing high-purity H
2
and carbon materials without directly generating CO
2
. Three typical methane pyrolysis for hydrogen processes: catalytic methane pyrolysis in fluidized beds
plasma methane pyrolysis
and molten medium methane pyrolysis were summarized and their principles
advantages
disadvantages and research progress were introduced. Among these processes
catalytic methane pyrolysis in fluidized beds requires the least energy but the catalysts are prone to carbon deposition
leading to unsustainable reactions and difficulty in separating carbon materials from catalysts
affecting downstream use. Plasma methane pyrolysis has a high conversion rate but requires a substantial energy input. Molten medium methane pyrolysis has lower energy consumption
and the carbon materials float on the surface of the molten medium
not hindering the continuous reaction and are easily separated and collected. However
the high temperature of the molten medium requires high requirements for the reactor materials
and the cost of purifying carbon materials also affects the economic viability of this process for industrialization. Combining renewable energy is the future trend towards achieving clean and efficient methane pyrolysis for hydrogen. Utilizing renewable energy sources such as solar and wind energy to provide the energy required for methane pyrolysis processes
can reduce the reliance on traditional energy. From current research and development
trends
molten medium methane pyrolysis process for hydrogen integrated with renewable energy sources is expected to become the key process for methane pyrolysis for hydrogen and carbon materials.
天然气甲烷裂解制氢碳材料反应工艺
natural gasmethane pyrolysishydrogen productioncarbon productsreaction technology
JIA Y, LI F, FAN K, et al . Cu-based bimetallic electrocatalysts for CO2 reduction [J]. Advanced Powder Materials, 2022, 1(1): 100012.
徐斯然, 吴奇, 卢帮安, 等 . “绿氢”工业化碱性催化剂研究现状及未来展望[J]. 物理化学学报, 2023, 39(2): 44-69.
XU S R, WU Q, LU B A, et al . Recent advances and future prospects on industrial catalysts for green hydrogen production in alkaline media [J]. Acta Physico-Chimica Sinica, 2023, 39(2): 44-69.
王镇, 肖丽俊, 干勇 . 新材料引领支撑绿色低碳经济发展[J]. 材料导报, 2024, 38(3): 22060075.
WANG Z, XIAO L J, GAN Y . Advanced materials lead and support the development of green and low-carbon economy [J]. Materials Reports, 2024, 38(3): 22060075.
KIM J, SHENG P, TAKAHASHI S, et al . Spin hall magnetoresistance in metallic bilayers [J]. Physical Review Letters, 2016, 116(9): 97201-97206.
ONI A O, ANAYA K, GIWA T, et al . Comparative assessment of blue hydrogen from steam methane reforming, autothermal reforming, and natural gas decomposition technologies for natural gas-producing regions [J]. Energy Conversion and Management, 2022, 254: 115245.
PARKINSON B, MATTHEWS J W, MCCONNAUGHY T B, et al . Techno‐economic analysis of methane pyrolysis in molten metals: Decarbonizing natural gas [J]. Chemical Engineering & Technology, 2017, 40(6): 1022-1030.
GU Y, WANG D F, CHEN Q Q, et al . Techno-economic analysis of green methanol plant with optimal design of renewable hydrogen production: A case study in China [J]. International Journal of Hydrogen Energy, 2022, 47(8): 5085-5100.
MCCONNACHIE M, KONAROVA M, SMART S . Literature review of the catalytic pyrolysis of methane for hydrogen and carbon production [J]. International Journal of Hydrogen Energy, 2023, 48(66): 25660-25682.
MSHEIK M, RODAT S, ABANADES S . Methane cracking for hydrogen production: A review of catalytic and molten media pyrolysis [J]. Energies, 2021, 14(11): 3107-3142.
LIU M Y, HUANG Z A, ZHOU Y, et al . Optimized process for melt pyrolysis of methane to produce hydrogen and carbon black over Ni foam/NaCl-KCl catalyst [J]. Processes, 2023, 11(2): 360-371.
RAZA J, KHOJA A H, ANWAR M, et al . Methane decomposition for hydrogen production: A comprehensive review on catalyst selection and reactor systems [J]. Renewable and Sustainable Energy Reviews, 2022, 168: 112774.
ZHANG K K, HUANG Z A, YANG M K, et al . Recent progress in melt pyrolysis: Fabrication and applications of high-value carbon materials from abundant sources [J]. SusMat, 2023, 3(5): 558-580.
周莹, 詹俊杰, 黄泽皑, 等 . 熔融介质裂解天然气制氢和高值碳研究进展[J]. 油气与新能源, 2023, 35(2): 80-88.
ZHOU Y, ZHAN J J, HUANG Z A, et al . Research progress of melting medium cracking hydrogen production via natural gas and high-value carbon [J]. Petroleum and New Energy, 2023, 35(2): 80-88.
张涛, 张莉梅 . 甲烷催化裂解制氢技术研究进展[J]. 应用化工, 2023, 52(8): 2414-2418.
ZHANG T, ZHANG L M . Research progress in hydrogen production from methane catalytic cracking [J]. Applied Chemical Industry, 2023, 52(8): 2414-2418.
曹梦杰, 聂林峰, 李双德, 等 . 甲烷催化裂解制氢研究进展[J]. 应用化工, 2023, 52(7): 2218-2224+2233.
CAO M J, NIE L F, LI S D, et al . Research progress in catalytic cracking of methane for hydrogen production [J]. Applied Chemical Industry, 2023, 52(7): 2218-2224+2233.
ALVES L, PEREIRA V, LAGARTEIRA T, et al . Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements [J]. Renewable & Sustainable Energy Reviews, 2021, 137: 110465.
BHASKAR A, ASSADI M, SOMEHSARAEI H N . Can methane pyrolysis based hydrogen production lead to the decarbonisation of iron and steel industry? [J]. Energy Conversion and Management: X, 2021, 10: 100079.
BECKER T, RICHTER M, AGAR D W . Methane pyrolysis: Kinetic studies and mechanical removal of carbon deposits in reactors of different materials [J]. International Journal of Hydrogen Energy, 2023, 48(6): 2112-2129.
KEUCHEL F, HEINLEIN M, HOHLMANN J, et al . Analysis and simplification of kinetic models for methane chlorination and pyrolysis [J]. Chemie Ingenieur Technik, 2022, 94(5): 712-719.
KUDINOV I V, VELIKANOVA Y V, NENASHEV M V, et al . Methane pyrolysis in molten media for hydrogen production: A review of current advances [J]. Petroleum Chemistry, 2023, 63(9): 1017-1026.
ABBAS H F, DAUD W . Hydrogen production by methane decomposition: A review [J]. International Journal of Hydrogen Energy, 2010, 35(3): 1160-1190.
SIRIWARDANE R, RILEY J, ATALLAH C, et al . Investigation of methane and ethane pyrolysis with highly active and durable iron-alumina catalyst to produce hydrogen and valuable nano carbons: Continuous fluidized bed tests and reaction rate analysis [J]. International Journal of Hydrogen Energy, 2023, 48(38): 14210-14225.
PINILLA J, MOLINER R, SUELVES I, et al . Production of hydrogen and carbon nanofibers by thermal decomposition of methane using metal catalysts in a fluidized bed reactor [J]. International Journal of Hydrogen Energy, 2007, 32(18): 4821-4829.
PAN Y, CAO L, YAO Y, et al . Graphitic co-products of clean hydrogen production enabling high‐rate‐performance dual‐carbon batteries [J]. Advanced Energy Materials, 2023, 13(22): 2300495.
TORRES D, DE LLOBET S, PINILLA J L, et al . Hydrogen production by catalytic decomposition of methane using a Fe-based catalyst in a fluidized bed reactor [J]. Journal of Natural Gas Chemistry, 2012, 21(4): 367-373.
QIAN W Z, W F, WANG Z W, et al . Production of carbon nanotubes in a packed bed and a fluidized bed [J]. AIChE Journal, 2003, 49(3): 619-625.
RASHIDI A, LOTFI R, FAKHRMOSAVI E, et al . Production of single-walled carbon nanotubes from methane over Co-Mo/MgO nanocatalyst: A comparative study of fixed and fluidized bed reactors [J]. Journal of Natural Gas Chemistry, 2011, 20(4): 372-376.
SUN E, ZHAI S, KIM D, et al . A semi-continuous process for co-production of CO2-free hydrogen and carbon nanotubes via methane pyrolysis [J]. Cell Reports Physical Science, 2023, 4(4): 101338.
WNUKOWSKI M . Methane pyrolysis with the use of plasma: Review of plasma reactors and process products [J]. Energies, 2023, 16(18): 6441.
KORANYI T I, NEMETH M, BECK A, et al . Recent advances in methane pyrolysis: Turquoise hydrogen with solid carbon production [J]. Energies, 2022, 15(17): 6342.
KERSCHER F, STARY A, GLEIS S, et al . Low-carbon hydrogen production via electron beam plasma methane pyrolysis: Techno-economic analysis and carbon footprint assessment [J]. International Journal of Hydrogen Energy, 2021, 46(38): 19897-19912.
SCHNEIDER S, BAJOHR S, GRAF F, et al . State of the art of hydrogen production via pyrolysis of natural gas [J]. ChemBioEng Reviews, 2020, 7(5): 150-158.
PRABOWO J, LAI L, CHIVERS B, et al . Solid carbon co-products from hydrogen production by methane pyrolysis: Current understandings and recent progress [J]. Carbon, 2024, 216: 118507.
MAŠLÁNI A, HLÍNA M, HRABOVSKÝ M, et al . Impact of natural gas composition on steam thermal plasma assisted pyrolysis for hydrogen and solid carbon production [J]. Energy Conversion and Management, 2023, 297: 117748.
PATLOLLA S R, KATSU K, SHARAFIAN A, et al . A review of methane pyrolysis technologies for hydrogen production [J]. Renewable & Sustainable Energy Reviews, 2023, 181: 113323.
DADSETAN M, KHAN M F, SALAKHI M, et al . CO2-free hydrogen production via microwave-driven methane pyrolysis [J]. International Journal of Hydrogen Energy, 2023, 48(39): 14565-14576.
DAGHAGHELEH O, SCHENK J, ZARL M A, et al . Feasibility of a plasma furnace for methane pyrolysis: Hydrogen and carbon production [J]. Energies, 2023, 17(1): 167-183.
KREUZNACHT S, PURCEL M, BÖDDEKER S, et al . Comparison of the performance of a microwave plasma torch and a gliding arc plasma for hydrogen production via methane pyrolysis [J]. Plasma Processes and Polymers, 2022, 20(1): 2200132.
赵西, 王丹, 丁桐, 等 . 甲烷等离子体法制氢气和碳材料研究进展[J]. 石油与天然气化工, 2023, 52(1): 40-49.
ZHAO X, WANG D, DING T, et al . Research progresses on production of hydrogen and carbon materials by methane pyrolysis using plasma [J]. Chemical Engineering of Oil & Gas, 2023, 52(1): 40-49.
MAŠLÁNI A, HRABOVSKÝ M, KŘENEK P, et al . Pyrolysis of methane via thermal steam plasma for the production of hydrogen and carbon black [J]. International Journal of Hydrogen Energy, 2021, 46(2): 1605-1614.
FULCHERI L, ROHANI V J, WYSE E, et al . An energy-efficient plasma methane pyrolysis process for high yields of carbon black and hydrogen [J]. International Journal of Hydrogen Energy, 2023, 48(8): 2920-2928.
FABRY F, FLAMANT G, FULCHERI L . Carbon black processing by thermal plasma. Analysis of the particle formation mechanism [J]. Chemical Engineering Science, 2001, 56(6): 2123-2132.
MESSERLE V E, USTIMENKO A B . Hydrogen production by thermal plasma pyrolysis of hydrocarbon gases [J]. IEEE Transactions on Plasma Science, 2023, 99: 1-5.
FINCKE J R, ANDERSON R P, HYDE T A, et al . Plasma pyrolysis of methane to hydrogen and carbon black [J]. Industrial & Engineering Chemistry Research, 2002, 41(6): 1425-1435.
LI T Y, REHMET C, CHENG Y, et al . Experimental comparison of methane pyrolysis in thermal plasma [J]. Plasma Chemistry and Plasma Processing, 2017, 37(4): 1033-1049.
CHEN L N, SONG Z G, ZHANG S C, et al . Ternary NiMo-Bi liquid alloy catalyst for efficient hydrogen production from methane pyrolysis [J]. Science, 2023, 381(6660): 857-861.
UPHAM D C, AGARWAL V, KHECHFE A, et al . Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon [J]. Science, 2017, 358: 917-921.
ZHOU Y X, HUANG Z A, ZHANG K K, et al . Economic analysis of hydrogen production and refueling station via molten-medium-catalyzed pyrolysis of natural gas process [J]. International Journal of Hydrogen Energy, 2024, 62: 1205-1213.
唐永亮 . 液态金属中气泡CVD法生长石墨烯的研究[D]. 成都: 电子科技大学, 2018.
TANG Y L . Reserch on growth of graphene by bubbling chemical vapor deposition in molten metal [D]. Chengdu: University of Electronic Science and Technology of China, 2018.
KIM J, OH C G, OH H S, et al . Catalytic methane pyrolysis for simultaneous production of hydrogen and graphitic carbon using a ceramic sparger in a molten NiSn alloy [J]. Carbon, 2023, 207: 1-12.
MCFARLAND E W, UPHAM C, ZENG J R, et al . Simultaneous reaction and separation of chemicals: US2020/0283293A1 [P]. 2020-09-10.
周莹, 周芸霄, 黄泽皑, 等 . 一种熔融金属分解甲烷直接制氢和高值碳的高温反应器: 216879251U [P]. 2022-07-05.
ZHOU Y, ZHOU Y X, HUANG Z A, et al . A high-temperature reactor in which molten metal decomposes methane to directly produce hydrogen and high-value carbon: 216879251U [P]. 2022-07-05.
PARKINSON B, TABATABAEI M, UPHAM D C, et al . Hydrogen production using methane: Techno-economics of decarbonizing fuels and chemicals [J]. International Journal of Hydrogen Energy, 2018, 43(5): 2540-2555.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构