浏览全部资源
扫码关注微信
大连理工大学 化工学院,辽宁 大连 116024
王克超(1991—),博士研究生,研究方向为高比表面积活性炭的制备,E-mail:kechaowang@outlook.com。
徐绍平(1962—),博士,教授,博士研究生导师,研究方向为生物质与煤热化学转化、多孔炭材料制备与应用,以及多孔材料吸附表征方法,E-mail:spxu@dlut.edu.cn。
纸质出版日期:2024-11-25,
收稿日期:2024-02-06,
修回日期:2024-03-04,
移动端阅览
王克超,徐绍平,王雯雯等.基于K循环的KOH活化石油焦制高比表面积活性炭联产氢气[J].低碳化学与化工,2024,49(11):63-69.
WANG Kechao,XU Shaoping,WANG Wenwen,et al.Activation of petroleum coke with KOH based on K recycle to produce high specific surface area activated carbon and co produce hydrogen[J].Low-carbon Chemistry and Chemical Engineering,2024,49(11):63-69.
王克超,徐绍平,王雯雯等.基于K循环的KOH活化石油焦制高比表面积活性炭联产氢气[J].低碳化学与化工,2024,49(11):63-69. DOI: 10.12434/j.issn.2097-2547.20240050.
WANG Kechao,XU Shaoping,WANG Wenwen,et al.Activation of petroleum coke with KOH based on K recycle to produce high specific surface area activated carbon and co produce hydrogen[J].Low-carbon Chemistry and Chemical Engineering,2024,49(11):63-69. DOI: 10.12434/j.issn.2097-2547.20240050.
KOH活化法制备高比表面积活性炭通常需要消耗大量KOH。为提高KOH利用效率,开发了一种基于K插层-脱插循环(以下简称“K循环”)的KOH活化石油焦制备高比表面积活性炭并联产H
2
的方法:在升温活化过程,KOH与碳质原料反应转化为单质K、K
2
O和K
2
CO
3
并析出H
2
,而K
2
CO
3
可继续反应生成单质K和K
2
O;在降温脱插过程,脱插试剂水蒸气与插层K、游离单质K和K
2
O反应生成KOH和H
2
;生成的KOH在二次升温活化时再次与碳质原料反应,如此构成K循环。在水平舟式反应器中考察了碳质原料种类(石油焦和石墨)、活化剂KOH和其活化中间产物K
2
CO
3
对活化过程气体产物析出规律和产品活性炭孔隙结构性质的影响,并在此基础上分析了K循环机理。结果表明,K循环效率和H
2
产量因所用碳质原料与活化剂不同而不同:石油焦的反应活性远高于石墨,KOH活化性能优于K
2
CO
3
。在KOH活化石油焦的K循环过程中,KOH转化率达80%,而K
2
CO
3
转化率为18.5%,经由K
2
CO
3
的转化环节决定了K循环效率。以石油焦为碳质原料、KOH为活化剂,在活化温度为800 ℃及脱插温度为250 ℃的条件下,4.5 g干燥后的石油焦与13.5 g KOH经二次活化-脱插,所得活性炭比表面积达2808 m
2
/g,并联产1403 mL/g H
2
(1 g石油焦产生1403 mL H
2
)。
The preparation of high specific surface area activated carbon by KOH activation method usually requires a large amount of KOH consumption. In order to improve the utilization efficiency of KOH
a method based on intercalation and de-intercalation of K (hereinafter referred to as “K recycle”) for preparing high specific surface area activa
ted carbon and co producing H
2
from activation of petroleum coke with KOH was developed. During the heating activation process
KOH reacted with carbonaceous raw materials and converted into K
K
2
O and K
2
CO
3
and produced H
2
while K
2
CO
3
can continue to react to generate K and K
2
O. During the cooling de-intercalation process
water vapour as the de-intercalation reagent was introduced to react with the intercalated K
free state K and K
2
O to generate KOH and H
2
. The regenerated KOH can react again with the carbonaceous raw materials during the secondary heating activation process
forming the K recycle. The effects of different carbonaceous raw materials (petroleum coke and graphite)
activation agent KOH and its activation intermediate K
2
CO
3
on the gas evolution during activation process and the pore structure properties of activated carbon were investigated in a horizontal boat reactor. Based on this
the K recycle mechanism was analyzed. The results show that the efficiency of K recycle and H
2
production vary with the carbonaceous raw materials and activation agents. The reactivity of petroleum coke is much higher than that of graphite
and the activation ability of KOH is better than that of K
2
CO
3
. In the activation process of petroleum coke with KOH
the conversion rate of KOH reaches 80%
while that of K
2
CO
3
is only 18.5%
indicating that the efficiency of K recycle is determined by the conversion of K
2
CO
3
.With petroleum coke as carbonaceous raw materials and KOH as activation agent
under the conditions of activation temperature 800 ℃ and de-intercalation temperature 250 ℃
4.5 g dried petroleum coke and 13.5 g KOH are subjected to secondary intercalation and de-intercalation
resulting in activated carbon with the specific surface area of 2808 m
2
/g and co producing 1403 mL/g H
2
(
1403 mL H
2
produced by 1 g petroleum coke).
活性炭石油焦K循环KOH氢气
activated carbonpetroleum cokeK recycleKOHhydrogen
XIE D, HUANG J C, WANG Z Q. Activated carbon derived from hydrochar of food waste for supercapacitor: Effect of components on electrochemical performance [J]. Fuel Processing Technology, 2023, 244: 107691.
HONG M W, PARK J H, WIN M Z, et al. Enhanced ammonia adsorption performance of MgCl2-loaded activated carbon in pressure swing adsorption [J]. Journal of Industrial and Engineering Chemistry, 2023, 118: 216-225.
LI Y H, CHANG F M, HUANG B, et al. Activated carbon preparation from pyrolysis char of sewage sludge and its adsorption performance for organic compounds in sewage [J]. Fuel, 2020, 266: 117053.
XIE J X, CAO J P, JIANG W. Catalytic hydrogenolysis of diphenyl ether over Ni/AC catalyst: Effect of hydrophilicity modification of activated carbon [J]. Fuel Processing Technology, 2023, 247: 107781.
VELURI P, NANAJI K, ANANDAN S, et al. Petroleum coke as an efficient single carbon source for high-energy and high-power Lithium-ion capacitors [J]. Energy Fuels, 2021, 35(10): 9010-9016.
WU J F, MONTES V, VIRLA L D, et al. Impacts of amount of chemical agent and addition of steam for activation of petroleum coke with KOH or NaOH [J]. Fuel Processing Technology, 2018, 181: 53-60.
卢春兰. 碱活化法制备石油焦基活性炭及活化机理研究[D]. 大连: 大连理工大学, 2007.
LU C L. Preparation of activated carbon from petroleum coke by KOH activation and the chemical activation mechanism [D]. Dalian: Dalian University of Technology, 2007.
OTOWA T, TANIBATA R, ITOH M. Production and adsorption characteristics of MAXSORB: High-surface-area active carbon [J]. Gas Separation & Purification, 1993, 7(4): 241-245.
OTOWA T, NOJIMA Y, MIYAZAKI T. Development of KOH activated high surface area carbon and its application to drinking water purification [J]. Carbon, 1997, 35(9): 1315-1319.
安部郁夫, 立本英机. 活性炭的应用技术[M]. 高尚愚(译者). 南京: 东南大学出版社, 2002: 39-40.
ABE I, HIDEKI T. Application technology of activated carbon [M]. GAO S Y (translator). Nanjing: Southeast University Press, 2002: 39-40.
YAMASHITA Y, OUCHI K. Influence of alkali on the carbonization process-I: Carbonization of 3,5-dimethylphenol-formaldehyde resin with NaOH [J]. Carbon, 1982, 20(1): 41-45.
RAYMUNDO-PIÑERO E, AZAIS P, CACCIAGUERRA T, et al. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organization [J]. Carbon, 2005, 43(4): 786-795.
LILLO-RÓDENAS M A, CAZORLA D, LINARES-SOLANO A. Understanding chemical reactions between carbons and NaOH and KOH: An insight into the chemical activation mechanism [J]. Carbon, 2003, 41(2):267-275.
LILLO-RÓDENAS M A, CAZORLA D, JUAN J J, et al. About reactions occurring during chemical activation with hydroxides [J]. Carbon, 2004, 42(7): 1371-1375.
XUE R, SHEN Z. Formation of graphite-potassium intercalation compounds during activation of MCMB with KOH [J]. Carbon, 2003, 41(9): 1862-1864.
WANG W W, XU S P, WANG K C, et al. De-intercalation of the intercalated potassium in the preparation of activated carbons by KOH activation [J]. Fuel Processing Technology, 2019, 189: 74-79.
HUI T S, ZAINI M A A. Potassium hydroxide activation of activated carbon: A commentary [J]. Carbon Letters, 2015, 16(4): 275-280.
HEIDARINEJAD Z, DEHGHANI M H, HEIDARI M, et al. Methods for preparation and activation of activated carbon: A review [J]. Environmental Chemistry Letters, 2020, 18: 393-415.
王雯雯, 徐绍平, 王克超. KOH活化制石油焦基活性炭过程中钾的插层和脱插作用研究[J]. 天然气化工—C1化学与化工, 2022, 47(6): 67-76.
WANG W W, XU S P, WANG K C. Intercalation and de-intercalation of potassium in preparation of petroleum coke-based activated carbons by KOH activation [J]. Natural Gas Chemical Industry, 2022, 47(6): 67-76.
LU C L, XU S P, LIU C. The role of K2CO3 during the chemical activation of petroleum coke with KOH [J]. Journal of Analytical and Applied Pyrolysis, 2010, 87(2): 282-287.
XIAO R L, XU S P, SU Y M, et al. The effects of hydrogen on KOH activation of petroleum coke [J]. Journal of Analytical and Applied Pyrolysis, 2012, 96(3): 120-125.
WANG K C, XU S P. Preparation of high specific surface area activated carbon from petroleum coke by KOH activation in a rotary kiln [J]. Processes, 2024, 12(2): 241.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构