浏览全部资源
扫码关注微信
江南大学 化学与材料工程学院,江苏 无锡 214122
王雨欣(2000—),硕士研究生,研究方向为费托合成,E-mail:wyx17360801773@163.com。
刘小浩(1976—),博士,教授,研究方向为合成气催化转化,E-mail:liuxh@jiangnan.edu.cn。
纸质出版日期:2024-08-25,
收稿日期:2024-02-05,
修回日期:2024-03-04,
移动端阅览
王雨欣,刘冰,刘小浩.H覆盖对费托合成催化剂CO活化影响的理论计算研究[J].低碳化学与化工,2024,49(08):10-17.
WANG Yuxin,LIU Bing,LIU Xiaohao.Theoretical calculation study on effects of H coverage on CO activation in Fischer-Tropsch synthesis catalysts[J].Low-carbon Chemistry and Chemical Engineering,2024,49(08):10-17.
王雨欣,刘冰,刘小浩.H覆盖对费托合成催化剂CO活化影响的理论计算研究[J].低碳化学与化工,2024,49(08):10-17. DOI: 10.12434/j.issn.2097-2547.20240049.
WANG Yuxin,LIU Bing,LIU Xiaohao.Theoretical calculation study on effects of H coverage on CO activation in Fischer-Tropsch synthesis catalysts[J].Low-carbon Chemistry and Chemical Engineering,2024,49(08):10-17. DOI: 10.12434/j.issn.2097-2547.20240049.
Fe基和Co基催化剂是最理想的费托合成催化剂,随着计算机模拟技术在催化领域快速地发展,深入理解Fe基和Co基催化剂表面的微观反应机理成为可能。采用理论计算方法,研究了不同H覆盖度的Fe基(反应条件:温度320 ℃、压力1 MPa以及
n
(H
2
):
n
(CO) = 1:1)、Co基(反应条件:温度240 ℃、压力1 MPa以及
n
(H
2
):
n
(CO) = 2:1)费托合成催化剂的表面结构以及H覆盖对CO活化与解离的影响。通过氢气化学势与氢吸附吉布斯自由能的线性关系确定了Fe基、Co基费托合成催化剂热力学最优的H覆盖表面模型,分别为H覆盖度为11/42的
χ
-Fe
5
C
2
(510)表面和H覆盖度为24/36的HCP Co(0001)表面。研究了洁净的催化剂表面与H覆盖的催化剂表面的CO解离机理及相关反应能垒,发现H覆盖会改变CO解离路径且增大CO解离能垒,相较于洁净的
χ
-Fe
5
C
2
(510)和HCP Co(0001)表面,H覆盖的
χ
-Fe
5
C
2
(510)和HCP Co(0001)表面的CO解离能垒分别升高了5.4%和20.3%。通过对表面态密度以及晶体轨道哈密顿布居的计算解释了H覆盖影响CO活化与解离的本质原因。
Fe-based and Co-based catalysts are the most ideal Fischer-Tropsch synthesis catalysts. With the rapid development of computer simulation technology in the field of catalysis
it is possible to deeply understand the microscopic reaction mechanism on the surface of Fe-based and Co-based catalysts. Theoretical calculation method was used to study the effects of surface structures of Fe-based (reaction conditions: temperature 320 ℃
pressure 1 MPa and
n
(H
2
):
n
(CO) = 1:1) and Co-based (reaction conditions: temperature 240 ℃
pressure 1 MPa and
n
(H
2
):
n
(CO) = 2:1) Fischer-Tropsch synthesis catalysts with different H coverages on the activation and dissociation of CO. The thermodynamically preferred H-covered surface models
of Fe-based and Co-based Fischer-Tropsch synthesis catalysts were determined through the linear relationships between the hydrogen chemical potential and the Gibbs free energy of hydrogen adsorption
which is the
χ
-Fe
5
C
2
(510) surface with H coverage of 11/42 and HCP Co(0001) surface with H coverage of 24/36
respectively. The CO dissociation mechanism and corresponding reaction energy barriers on the clean surface and the H-covered surface of catalysts were studied
and it is found that H coverage can change the reaction pathways of CO dissociation and increase the dissociation energy barrier. Compared with the clean surfaces of
χ
-Fe
5
C
2
(510) and HCP Co(0001)
the dissociation energy barriers of CO on H-covered
χ
-Fe
5
C
2
(510) and HCP Co(0001) surfaces increase by 5.4% and 20.3%
respectively. The origin reasons for the effects of H coverage on CO activation and dissociation were explained by calculating the density of states and crystal orbitals Hamiltonian population.
费托合成催化剂CO活化H覆盖DFT计算
Fischer-Tropsch synthesis catalystsCO activationH coverageDFT calculation
NABAHO D, NIEMANTSVERDRIET J W, CLAEYS M, et al. Hydrogen spillover in the Fischer-Tropsch synthesis: An analysis of gold as a promoter for cobalt-alumina catalysts [J]. Catalysis Today, 2016, 275: 27-34.
GHOGIA A C, CAYEZ S, MACHADO B F, et al. Hydrogen spillover in the Fischer-Tropsch synthesis on carbon-supported cobalt catalysts [J]. ChemCatChem, 2020, 12(4): 1117-1128.
XIE J X, TORRES GALVIS H M, KOEKEN A C J, et al. Size and promoter effects on stability of carbon-nanofiber-supported iron-based Fischer-Tropsch catalysts [J]. ACS Catalysis, 2016, 6(6): 4017-4024.
CHENG J, GONG X Q, HU P, et al. A quantitative determination of reaction mechanisms from density functional theory calculations: Fischer-Tropsch synthesis on flat and stepped cobalt surfaces [J]. Journal of Catalysis, 2008, 254(2): 285-295.
WESTSTRATE C J, MAHMOODINIA M, FARSTAD M H, et al. Interaction of hydrogen with flat (0001) and corrugated (11-20) and (10-12) cobalt surfaces: Insights from experiment and theory [J]. Catalysis Today, 2020, 342: 124-130.
LIN T J, GONG K, WANG C Q, et al. Fischer-Tropsch synthesis to olefins: Catalytic performance and structure evolution of Co2C-based catalysts under a CO2 environment [J]. ACS Catalysis, 2019, 9(10): 9554-9567.
石利红, 李晓峰, 李德宝, 等. 钴基催化剂在费-托反应过程中的失活行为[J]. 催化学报, 2010, 31(12): 1483-1488.
SHI L H, LI X F, LI D B, et al. Deactivation of cobalt-based catalysts for Fischer-Tropsch synthesis [J]. Chinese Journal of Catalysis, 2010, 31(12): 1483-1488.
赵华博, 马丁. χ-Fe5C2: 结构,合成与催化性质调控[J]. 物理化学学报, 2020, 36(1): 32-41.
ZHAO H B, MA D. χ-Fe5C2: Structure, synthesis, and tuning of catalytic properties [J]. Acta Physico-Chimica Sinica, 2020, 36(1): 32-41.
RIVERA DE LA CRUZ J G, SABBE M K, REYNIERS M F. First principle study of chain termination reactions during Fischer-Tropsch Synthesis on χ-Fe5C2(010) [J]. Molecular Catalysis, 2018, 453: 55-63.
ZHANG M H, GUAN X Y, YU Y Z. Theoretical insights into the removal pathways of adsorbed oxygen on the surface of χ-Fe5C2(510) [J]. Chemical Engineering Science, 2023, 271: 118576.
YE D, TANG W, ZHANG T, et al. Enhancing the synergism of Fe3O4 and Fe5C2 to improve the process of CO2 hydrogenation to olefines [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 654: 130145.
FISCHER F, TROPSCH H. Synthesis of petroleum at atmospheric pressure from gasification products of coal [J]. Brennstoff Chemie, 1926, 7: 97-104.
KUMMER J T, EMMETT P H. Fischer-Tropsch synthesis mechanism studies: The addition of radioactive alcohols to the synthesis gas [J]. Journal of the American Chemical Society, 1953, 75(21): 5177-5183.
VAN SANTEN R A, GHOURI M M, SHETTY S, et al. Structure sensitivity of the Fischer-Tropsch reaction: Molecular kinetics simulations [J]. Catalysis Science & Technology, 2011, 1(6): 891-911.
ZHAO Y H, SUN K, MA X, et al. Carbon chain growth by formyl insertion on rhodium and cobalt catalysts in syngas conversion [J]. Angewandte Chemie International Edition, 2011, 50(23): 5335-5338.
XIE J X, YANG J, DUGULAN A I, et al. Size and promoter effects in supported iron Fischer-Tropsch catalysts: Insights from experiment and theory [J]. ACS Catalysis, 2016, 6(5): 3147-3157.
VAN HELDEN P, VAN DEN BERG J A, WESTSTRATE C J. Hydrogen adsorption on Co surfaces: A density functional theory and temperature programmed desorption study [J]. ACS Catalysis, 2012, 2(6): 1097-1107.
REMEDIAKIS I N, ABILD-PEDERSEN F, NORSKOV J K. DFT study of formaldehyde and methanol synthesis from CO and H2 on Ni(111) [J]. The Journal of Physical Chemistry B, 2004, 108(38): 14535-14540.
REN J, AI N, OU D, et al. Insights into the Fischer-Tropsch mechanism on χ-Fe5C2(510) based on the hydrogen coverage effect [J]. Molecular Catalysis, 2023, 538: 112990.
PHAM T H, DUAN X Z, QIAN G, et al. CO activation pathways of Fischer-Tropsch synthesis on χ-Fe5C2(510): Direct versus hydrogen-assisted CO dissociation [J]. The Journal of Physical Chemistry C, 2014, 118(19): 10170-10176.
WANG Q, ZHANG R G, JIA L T, et al. Insight into the effect of surface coverage and structure over different Co surfaces on the behaviors of H2 adsorption and activation [J]. International Journal of Hydrogen Energy, 2016, 41(48): 23022-23032
HE Y R, ZHAO P, YIN J Q, et al. CO direct versus H-assisted dissociation on hydrogen coadsorbed χ-Fe5C2 Fischer-Tropsch catalysts [J]. The Journal of Physical Chemistry C, 2018, 122(36): 20907-20917.
MA Y P, WANG G C. Systematic theoretical study of CO activation over clean and potassium-modified transition metals [J]. The Journal of Physical Chemistry C, 2023, 127(1): 265-278.
LIU Q Y, SHANG C, LIU Z P. In situ active site for CO activation in Fe-catalyzed Fischer-Tropsch synthesis from machine learning [J]. Journal of the American Chemical Society, 2021, 143(29): 11109-11120.
QIN C, HOU B, WANG J G, et al. Crystal-plane-dependent Fischer-Tropsch performance of cobalt catalysts [J]. ACS Catalysis, 2018, 8(10): 9447-9455.
LUO D, LIU X C, GAO R, et al. Theoretical insights into the structure and activity of cobalt modulated by surface and subsurface carbon in operando conditions [J]. The Journal of Physical Chemistry C, 2020, 124(34): 18576-18586.
ZHAO M, SUN J C, LI X H, et al. Synthesis of light olefins from syngas catalyzed by supported iron-based catalysts on alumina [J]. Catalysis Today, 2022, 402: 300-309.
HE F G, ZHANG T, LIANG J, et al. The application of DFT calculation in the study of iron-based catalyst for Fischer-Tropsch synthesis [J]. Journal of Fuel Chemistry and Technology, 2023, 51(11): 1540-1564.
ZHANG M H, REN J, YU Y Z. Insights into the hydrogen coverage effect and the mechanism of Fischer-Tropsch to olefins process on Fe5C2(510) [J]. ACS Catalysis, 2020, 10(1): 689-701.
BANERJEE A, VAN BAVEL A P, KUIPERS H P C E, et al. CO activation on realistic cobalt surfaces: Kinetic role of hydrogen [J]. ACS Catalysis, 2017, 7(8): 5289-5293.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构