浏览全部资源
扫码关注微信
1.沈阳化工大学 化学工程学院,辽宁 沈阳 110142
2.中国科学院 大连化学物理研究所,辽宁 大连 116023
伊程程(1993—),硕士研究生,研究方向为费托合成,E-mail:yichengcheng@dicp.ac.cn。
刘岳峰(1985—),博士,研究员,研究方向为多相催化,E-mail:yuefeng.liu@dicp.ac.cn。
纸质出版日期:2024-08-25,
收稿日期:2024-02-02,
修回日期:2024-03-05,
移动端阅览
伊程程,韦春洪,徐冰等.纳米金刚石改性钴基催化剂的费托合成性能研究[J].低碳化学与化工,2024,49(08):38-45.
YI Chengcheng,WEI Chunhong,XU Bing,et al.Study on catalytic performance of cobalt-based catalysts modified with nanodiamonds in Fischer-Tropsch synthesis[J].Low-carbon Chemistry and Chemical Engineering,2024,49(08):38-45.
伊程程,韦春洪,徐冰等.纳米金刚石改性钴基催化剂的费托合成性能研究[J].低碳化学与化工,2024,49(08):38-45. DOI: 10.12434/j.issn.2097-2547.20240044.
YI Chengcheng,WEI Chunhong,XU Bing,et al.Study on catalytic performance of cobalt-based catalysts modified with nanodiamonds in Fischer-Tropsch synthesis[J].Low-carbon Chemistry and Chemical Engineering,2024,49(08):38-45. DOI: 10.12434/j.issn.2097-2547.20240044.
Co基催化剂在费托合成反应中具有优异的反应活性以及碳链增长能力,其催化性能与金属Co纳米颗粒的还原度和粒径紧密相关,通过添加助剂调控金属Co的还原度和分散度是提高其催化费托合成反应性能的重要手段。以具有化学惰性以及良好导热性的SiC为载体,加入少量具有丰富表面官能团的纳米金刚石(NDs)作为结构调节剂,有效提高了催化剂中Co物种的分散度和还原度,提升了其催化费托合成反应性能。N
2
物理吸/脱附结果表明,NDs的加入对催化剂的比表面积、孔径等参数影响较小。CO化学吸附结果表明,适量NDs的加入促进了催化剂中活性金属Co的分散,增加了金属Co的表面积,为费托合成反应提供了更多的活性位点。透射电镜(TEM)结果表明,在Co/SiC(
w
(Co) = 10%)中加入NDs后,催化剂中金属Co的粒径减小,且NDs在催化剂表面均匀分散。H
2
程序升温还原(H
2
-TPR)和CO预吸附的H
2
程序升温表面反应(CO-H
2
-TPSR)结果表明,NDs的加入降低了Co
3
O
4
还原为金属Co的还原温度,促进了Co
3
O
4
的还原以及CO的活化。调节剂修饰的Co/1.0NDs-SiC(
w
(Co) = 10%,
m
(NDs):
m
(SiC) = 1.0%)与Co/SiC催化剂相比,CO转化率从15.6%提升至29.0%,产物中C
5+
烃类选择性仍可保持在75%以上,且稳定运行70 h未见明显失活。以上结果可为研发纳米碳材料改性的高效费托合成反应的催化剂提供
新的研究思路。
Cobalt-based catalysts exhibit excellent reactivity and carbon chain growth capability in the Fischer-Tropsch synthesis reaction
and their catalytic performance is closely related to the reduction degree and size of metal Co particles. Regulating the reduction degree and dispersion degree of metal Co by adding promoters is an important way to enhance their catalytic performance in Fischer-Tropsch synthesis reaction. By using SiC as a support with chemical inertness and good thermal conductivity
and adding a small amount of nanodiamonds (NDs) with rich surface functional groups as structural regulators
the dispersion degree and reduction degree of Co species in the catalyst were effectively improved
and its catalytic performance in Fischer-Tropsch synthesis reaction was enhanced. The results of N
2
physical adsorption/desorption show that the addition of NDs has little effect on the parameters such as specific surface areas and pore sizes of the catalysts. The results of CO chemisorption show that the addition of an appropriate amount of NDs promotes the dispersion of active metal Co in the catalysts
increases the surface area of metal Co and provides more active sites for the Fischer-Tropsch synthesis reaction. The results of transmission electron microscopy (TEM) show that after the addition of NDs to Co/SiC (
m
(NDs):
m
(SiC) = 1.0%)
the particle sizes of metal Co in the catalysts are reduced
and NDs are uniformly dispersed on the catalyst surface. The results of H
2
-temperature programmed reduction (H
2
-TPR) and CO-H
2
-temperature programmed surface reaction (CO-H
2
-TPSR) show that the addition of NDs reduces the reduction temperature of Co
3
O
4
to metal Co and promotes the reduction of Co
3
O
4
and the activation of CO. Compared with the Co/SiC catalyst
the NDs-modified Co/1.0NDs-SiC (
w
(Co) = 10%
m
(NDs):
m
(SiC) = 1.0%) catalyst exhibits an increase of CO conversion rate from 15.6% to 29.0%
and the selectivity of C
5+
hydrocarbon products still maintains at above 75%
and shows stable operation and no significant deactivation for 70 h. The above results can provide a new research idea for the development of efficient catalysts modified with nanocarbon materials in Fischer-Tropsch synthesis reaction.
Co基催化剂费托合成纳米金刚石碳调节剂
Co-based catalystFischer-Tropsch synthesisnanodiamondscarbon regulator
CHEN W, LIN T J, DAI Y Y, et al. Recent advances in the investigation of nanoeffects of Fischer-Tropsch catalysts [J]. Catalysis Today, 2018, 311: 8-22.
GHOGIA A C, NZIHOU A, SERP P, et al. Cobalt catalysts on carbon-based materials for Fischer-Tropsch synthesis: A review [J]. Applied Catalysis A: General, 2021, 609: 117906.
ZHOU W, CHENG K, KANG J C, et al. New horizon in C1 chemistry: Breaking the selectivity limitation in transformation of syngas and hydrogenation of into hydrocarbon chemicals and fuels [J]. Chemical Society Reviews, 2019, 48(12): 3193-3228.
DE BEER M, KUNENE A, NABAHO D, et al. Technical and economic aspects of promotion of cobalt-based Fischer-Tropsch catalysts by noble metals—A review [J]. Journal of the Southern African Institute of Mining and Metallurgy, 2014, 114(2): 157-165.
CHEN Y P, WEI J T, DUYAR M S, et al. Carbon-based catalysts for Fischer-Tropsch synthesis [J]. Chemical Society Reviews, 2021, 50(4): 2337-2366.
GAO W, ZHU Q S, MA D. Nanostructured catalyst for Fischer-Tropsch synthesis [J]. Chinese Journal of Chemistry, 2018, 36(9): 798-808.
PIAO Y A, JIANG Q, LI H, et al. Identify Zr promotion effects in atomic scale for Co-based catalysts in Fischer-Tropsch synthesis [J]. ACS Catalysis, 2020, 10(14): 7894-7906.
JOHNSON G R, BELL A T. Effects of Lewis acidity of metal oxide promoters on the activity and selectivity of Co-based Fischer-Tropsch synthesis catalysts [J]. Journal of Catalysis, 2016, 338: 250-264.
ZHANG Q H, DENG W P, WANG Y. Recent advances in understanding the key catalyst factors for Fischer-Tropsch synthesis [J]. Journal of Energy Chemistry, 2013, 22(1): 27-38.
韦春洪, 蒋倩, 王盼盼, 等. 贵金属Pt促进Co基费托合成催化剂的原子尺度结构分析[J]. 高等学校化学学报, 2022, 43(8): 10-19.
WEI C H, JIANG Q, WANG P P, et al. Atomic scale investigation of Pt atoms/clusters promoted Co-catalyzed Fischer-Tropsch synthesis [J]. Chemical Journal of Chinese Universities, 2022, 43(8): 10-19.
TKACHEV S, BUSLAEVA E Y, GUBIN S. Graphene: A novel carbon nanomaterial [J]. Inorganic Materials, 2011, 47: 1-10.
王盼盼, 韦春洪, 伊程程, 等. 碳纳米管表面化学结构对Co基费托合成催化剂性能的影响[J]. 低碳化学与化工, 2023, 48(2): 33-41.
WANG P P, WEI C H, YI C C, et al. Effect of surface chemical structure of carbon nanotubes on performance of Co-based Fischer-Tropsch synthesis catalysts [J]. Low-Carbon Chemistry and Chemical Engineering, 2023,48(2): 33-41.
LIU C C, HE Y, WEI L, et al. Hydrothermal carbon-coated TiO2 as support for Co-based catalyst in Fischer-Tropsch synthesis [J]. ACS Catalysis, 2018, 8(2): 1591-1600.
HONG J P, WANG B, XIAO G Q, et al. Tuning the metal-support interaction and enhancing the stability of Titania-supported cobalt Fischer-Tropsch catalysts via carbon nitride coating [J]. ACS Catalysis, 2020, 10(10): 5554-5566.
ZHENG J W, HUANG L L, CUI C H, et al. Ambient-pressure synthesis of ethylene glycol catalyzed by C60-buffered Cu/SiO2 [J]. Science, 2022, 376(6590): 288-292.
LEE K, MENDES P C D, JEON H, et al. Engineering nanoscale H supply chain to accelerate methanol synthesis on ZnZrOx [J]. Nature Communications, 2023, 14(5): 3074-3089.
DUAN X G, TIAN W J, ZHANG H Y, et al. sp2/sp3 framework from diamond nanocrystals: A key bridge of carbonaceous structure to carbocatalysis [J]. ACS Catalysis, 2019, 9(8): 7494-7519.
LIN Y M, FENG Z B, YU L H, et al. Insights into the surface chemistry and electronic properties of sp2 and sp3-hybridized nanocarbon materials for catalysis [J]. Chemical Communications, 2017, 53(35): 4834-4837.
GUPTA N, DING Y X, FENG Z B, et al. Palladium supported on nanodiamonds as an efficient catalyst for the hydrogenating deamination of benzonitrile and related compounds [J]. ChemCatChem, 2016, 8(5): 922-928.
ZHANG L Y, LIU H Y, HUANG X, et al. Stabilization of palladium nanoparticles on nanodiamond-graphene core-shell supports for CO oxidation [J]. Angewandte Chemie International Edition, 2015, 54(52): 15823-15826.
WANG R, SUN X Y, ZHANG B S, et al. Hybrid nanocarbon as a catalyst for direct dehydrogenation of propane: Formation of an active and selective core-shell sp2/sp3 nanocomposite structure [J]. Chemistry: A European Journal, 2014, 20(21): 6324-6331.
SHAO P H, TIAN J Y, YANG F, et al. Identification and regulation of active sites on nanodiamonds: Establishing a highly efficient catalytic system for oxidation of organic contaminants [J]. Advanced Functional Materials, 2018, 28(13): 1705295.
DIAO J, LIU H, FENG Z, et al. Highly dispersed nanodiamonds supported on few-layer graphene as robust metal-free catalysts for ethylbenzene dehydrogenation reaction [J]. Catalysis Science & Technology, 2015, 5(11): 4950-4953.
KIM M C, LEE D, JEONG S H, et al. Nanodiamond-gold nanocomposites with the peroxidase-like oxidative catalytic activity [J]. ACS Applied Materials & Interfaces, 2016, 8(50): 34317-34326.
SULTAN N M, ALBARODY T M B, AL-JOTHERY H K M, et al. Thermal expansion of 3C-SiC obtained from in-situ X-ray diffraction at high temperature and first-principal calculations [J]. Materials, 2022, 15(18): 6229.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构