浏览全部资源
扫码关注微信
西南化工研究设计院有限公司 工业排放气综合利用国家重点实验室,国家碳一化学工程技术研究中心, 四川 成都 610225
惠武卫(1981—),本科,高级工程师,研究方向为催化剂工业应用、碳捕集等,E-mail:huiwuwei@swchem.com。
郑珩(1979—),博士,正高级工程师,研究方向为工业催化、低碳化工等,E-mail:zhengh@swchem.com。
纸质出版日期:2024-08-25,
收稿日期:2024-01-25,
修回日期:2024-04-16,
移动端阅览
惠武卫,郑珩,杜勇等.甲醇合成催化剂失活典型案例剖析[J].低碳化学与化工,2024,49(08):138-142.
HUI Wuwei,ZHENG Heng,DU Yong,et al.Analysis of typical cases of methanol synthesis catalyst deactivation[J].Low-carbon Chemistry and Chemical Engineering,2024,49(08):138-142.
惠武卫,郑珩,杜勇等.甲醇合成催化剂失活典型案例剖析[J].低碳化学与化工,2024,49(08):138-142. DOI: 10.12434/j.issn.2097-2547.20240031.
HUI Wuwei,ZHENG Heng,DU Yong,et al.Analysis of typical cases of methanol synthesis catalyst deactivation[J].Low-carbon Chemistry and Chemical Engineering,2024,49(08):138-142. DOI: 10.12434/j.issn.2097-2547.20240031.
甲醇是连接现代煤化工和传统煤化工的平台产品。工业上通常采用合成气在催化剂作用下反应制备甲醇。甲醇合成催化剂的使用寿命通常在3~4年,保障甲醇合成催化剂的正常使用寿命对甲醇企业具有重要意义。对工业中甲醇合成催化剂硫中毒和铁中毒的典型案例进行了剖析,结合文献资料对中毒机理进行了阐述,指出铁中毒和硫中毒等是导致甲醇合成催化剂失活的主要原因,同时提出了相应的应对措施,可为保障甲醇合成催化剂的正常使用寿命提供指导。
Methanol is a key product connecting modern coal chemical industry and traditional coal chemical industry. Industrially
methanol is typically produced by the reaction of syngas under the action of the catalyst. The service life of methanol synthesis catalysts is usually 3 to 4 years
and ensuring the normal service life of methanol synthesis catalysts is of great significance to methanol enterprises. Typical cases of sulfur poisoning and iron poisoning in industrial methanol synthesis catalysts were analyzed
and the poisoning mechanisms were explained based on literature data. It is pointed out that iron poisoning and sulfur poisoning are the main causes of methanol synthesis catalyst deactivation. Corresponding countermeasures were provided
which can offer guidance for ensuring the normal service life of methanol synthesis catalysts.
甲醇催化剂失活铁中毒硫中毒
methanolcatalystsdeactivationiron poisoningsulfur poisoning
靳杰, 陈燕, 靳政莹. “双碳”目标下发展甲醇经济的思考[J]. 现代工业经济和信息化, 2023, 231(9): 190-192.
JIN J, CHEN Y, JIN Z Y. Development of methanol economy in the context of achieving the “Dual Carbon” goal [J]. Modern Industrial Economy and Informationization, 2023, 231(9): 190-192.
OLAH G A, GOEPPERT A, PRAKASH GO K S. 跨越油气时代: 甲醇经济[M]. 胡金波, 等, 译. 北京: 化学工业出版社, 2007.
OLAH G A, GOEPPERT A, PRAKASH GO K S. Crossing the oil and gas era: Methanol economy [M]. HU J B, et al. Beijing: Chemical Industry Press, 2007.
王江涛, 鹿晓斌. CO2促进“甲醇经济”和“氢经济”的共同发展[J]. 现代化工, 2021, 41(7): 14-18+25.
WANG J T, LU X B. Together development of “methanol economy” and “hydrogen economy” driven by CO2 utilization [J]. Modern Chemical Industry, 2021, 41(7): 14-18+25.
PHADKE M. The birth of a hydrogen economy? [J]. Tribology & Lubrication Technology, 2020, 76(11): 18-22.
Anonymous. Revving up the hydrogen economy [J]. Chemical Engineering Process, 2020, 116(6): 6-8.
李庆勋. 碳中和征程上氢能发展路径的思考[J]. 中国石油和化工, 2021, (1): 70.
LI Q X. Reflection on the development path of hydrogen energy on the journey of carbon neutrality [J]. China Petroleum and Chemical Industry, 2021, (1): 70.
ZHONG J W, YANG X J, HUANG Y Q, et al. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol [J]. Chemical Society Reviews, 2020, 49(5): 1385-1413.
霍凯旋, 王阳, 吴明铂. CO2加氢制甲醇用Cu基催化剂研究进展[J]. 低碳化学与化工, 2023, 48(3): 22-31.
HUO K X, WANG Y, WU M B. Research progress on Cu-based catalysts for CO2 hydrogenation to methanol [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(3): 22-31.
陈浩, 陈桂, 宋丹丹, 等. 高活性Cu-ZnO@SiO2纳米催化剂催化CO2加氢制甲醇[J]. 高等学校化学学报, 2023, 44(11), 111-119.
CHEN H, CHEN G, SONG D D, et al. High-performance Cu-ZnO@SiO2 nano-catalyst for CO2 hydrogenation to methanol [J]. Chemical Journal of Chinese Universities, 2023, 44(11), 111-119.
张晓阳, 凌华招, 胡志彪, 等. 一种氢气和二氧化碳合成甲醇的方法: 101386564B [P]. 2011-12-28.
ZHANG X Y, LING H Z, HU Z B, et al. A method for synthesizing methanol from hydrogen and carbon dioxide: 101386564B [P]. 2011-12-28.
蹇守华, 王雪峰, 吴路平, 等. 二氧化碳多段合成制甲醇系统: 216556214U [P]. 2022-05-17.
JIAN S H, WANG X F, WU L P, et al. Carbon dioxide multi-stage synthesis to methanol system: 216556214U [P]. 2022-05-17.
吴子波, 蹇守华, 吴路平. 不同合成工艺的二氧化碳催化剂加氢制甲醇装置经济性分析[J]. 低碳化学与化工, 2023, 48(6): 60-66.
WU Z B, JIAN S H, WU L P. Plants economic analysis of catalytic hydrogenation of CO2 to methanol with different synthesis processes [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(6): 60-66.
喻健, 任所才, 刘斌, 等. 铜基甲醇催化剂失活因素及解决措施研究进展[J]. 天然气化工—C1化学与化工, 2019, 44(1): 118-122.
YU J, REN S C, LIU B, et al. Advances in deactivation and solutions of Cu-based methanol catalysts [J]. Natural Gas Chemical Industry, 2019, 44(1): 118-122.
BEHRENS M, STUDT F, KASATKIN I, et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts [J]. Science, 2012, 336(6083): 893-897.
卢微维. 甲醇催化剂失活关键因素分析及耐硫型催化剂制备研究[D]. 贵阳: 贵州大学, 2021.
LU W W. Analysis of key factors for deactivation of methanol catalysts and study on preparation of sulfur resistant catalysts [D]. Guiyang: Guizhou University, 2021.
李亚斌, 石兰英, 赵强. 影响甲醇合成催化剂失活的因素及对策 [J]. 天津化工, 2016, 30(3): 34-36.
LI Y B, SHI L Y, ZHAO Q. Factors and countermeasures affecting the deactivation of methanol synthesis catalysts [J]. Tianjin Chemical Industry, 2016, 30(3): 34-36.
段秀琴. 甲醇合成铜基催化剂的研究概述[J]. 山西化工, 2009, 29(2): 36-38+48.
DUAN X Q. Research overview of copper based catalysts for methanol synthesis [J]. Shanxi Chemical Industry, 2009, 29(2): 36-38+48.
陈文瑞, 李虎强, 冯媛. 合成气制甲醇催化剂研究进展(Ⅰ)—铜基催化剂[J]. 广州化工, 2017, 45(9): 3-5.
CHEN W R, LI H Q, FENG Y. Research progress on catalysts for synthesis gas to methanol (I)—Copper based catalysts [J]. Guangzhou Chemical Industry, 2017, 45(9): 3-5.
李雯博, 史连军, 王梦, 等. 合成气制甲醇CuZnAl催化剂失活因素研究[J]. 天然气化工—C1化学与化工, 2020, 45(5): 31-38.
LI W B, SHI L J, WANG M, et al. Deactivation factors study of CuZnAl catalyst for syngas to methanol [J]. Natural Gas Chemical Industry, 2020, 45(5): 31-38.
李保东. 甲醇合成铜基催化剂催化活性及失活研究[J]. 上海化工, 2011, 36(10): 32-36.
LI B D. Catalytic activity and deactivation research of the methanol synthesis copper-based catalyst [J]. Shanghai Chemical Industry, 2011, 36(10): 32-36.
ROBERTS G W. Deactivation of methanol synthesis catalysts [J]. Industrial & Engineering Chemistry Research, 1993, 32: 1610- 1621.
李选志, 弥永丰. 甲醇合成气中羰基金属化合物对催化剂的影响及对策[J]. 工业催化, 2006, 14(10): 28-30.
LI X Z, MI Y F. Influence of metal carbonyl in synthesis gas on methanol synthesis catalysts and the countermeasures [J]. Industrial Catalysis, 2006, 14(10): 28-30.
GOLDEN T C. Removal of trace iron and nickel carbonyl by adsorption [J]. Industrial & Engineering Chemistry Research, 1991, 30(3): 502-507.
李宾, 李季, 惠武卫. 某60万t/a甲醇装置废合成催化剂分析和失活原因探讨[J]. 天然气化工—C1化学与化工, 2018, 43(5): 119-121.
LI B, LI J, HUI W W. Analysis of spent methanol synthesis catalysts from a 600 kt/a methanol plant and discussion on causes of deactivation [J]. Natural Gas Chemical Industry, 2018, 43(5): 119-121.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构