浏览全部资源
扫码关注微信
1.河北工程大学 材料科学与工程学院,河北 邯郸 056038
2.河北工程大学 河北省资源勘测研究重点实验室,河北 邯郸 056038
庞薇(1999—),硕士研究生,研究方向为固废材料资源化利用,E-mail:PW991133@163.com。
李神勇(1986—),博士,副教授,研究方向为大宗固体废弃物资源化利用,E-mail:shenyong360@hebeu.edu.cn。
纸质出版日期:2024-07-25,
收稿日期:2024-01-06,
修回日期:2024-03-01,
扫 描 看 全 文
庞薇,秦身钧,郝龙龙等.粉煤灰基硅铝酸盐材料的合成及其捕集CO2的研究进展[J].低碳化学与化工,2024,49(07):42-54.
PANG Wei,QIN Shenjun,HAO Longlong,et al.Research progress in preparation of fly ash based aluminosilicate materials and their CO2 capture[J].Low-carbon Chemistry and Chemical Engineering,2024,49(07):42-54.
庞薇,秦身钧,郝龙龙等.粉煤灰基硅铝酸盐材料的合成及其捕集CO2的研究进展[J].低碳化学与化工,2024,49(07):42-54. DOI: 10.12434/j.issn.2097-2547.20240010.
PANG Wei,QIN Shenjun,HAO Longlong,et al.Research progress in preparation of fly ash based aluminosilicate materials and their CO2 capture[J].Low-carbon Chemistry and Chemical Engineering,2024,49(07):42-54. DOI: 10.12434/j.issn.2097-2547.20240010.
CO
2
大量排放导致全球变暖加剧,碳捕集可减缓CO
2
排放对气候变化的影响,但吸附剂高昂的成本阻碍了碳捕集技术的发展。同时煤炭燃烧量持续增加使粉煤灰产量不断增加,而粉煤灰的高值化利用率较低。将
粉煤灰用于合成粉煤灰基硅铝酸盐材料,并应用于碳捕集技术可实现工业固体废物的高值化利用和碳减排的双重目标。介绍了粉煤灰合成硅铝酸盐材料前的预处理步骤,系统讨论了粉煤灰基沸石、Li
4
SiO
4
吸附剂和SiO
2
介孔材料的合成和其捕集CO
2
的研究,然后对粉煤灰基硅铝酸盐材料吸附CO
2
的动力学进行了总结。粉煤灰基硅铝酸盐材料制备前的物理和化学预处理步骤可优化材料的孔隙结构及表面化学性质,胺功能化或金属离子掺杂等方式可实现对材料结构和CO
2
吸附性能的调控。粉煤灰基硅铝酸盐材料的CO
2
吸附动力学拟合因产物及吸附条件不同而存在差异。深入理论研究,推动规模化工程应用,对促进碳捕集技术发展具有重要的指导意义。
The escalating emissions of CO
2
exacerbate global warming. Carbon capture offers a potential avenue to attenuate CO
2
emissions
but the high cost of adsorbents acts as a barrier to the development of carbon capture technologies. Simultaneously
the continual increase in coal combustion leads to a rise in fly ash production
yet its valorization remains relatively low. Utilizing fly ash for synthesizing fly ash-based aluminosilicate materials and their application in carbon capture technologies present a dual solution by valorizing industrial solid waste and reducing carbon emissions. The preprocessing steps prior to synthesizing fly ash-based aluminosilicate materials were outlined and the research on synthesis of fly ash-based zeolites
Li
4
SiO
4
adsorbents
and SiO
2
mesoporous materials and their synthesis were systematically discussed
and the kinetics of CO
2
adsorption on fly ash-based aluminosilicate materials were summarized. Physical and chemical preprocessing steps before preparing fly ash-based aluminosilicate materials optimize the materials’ pore structure and surface chemical properties. Strategies such as amine functionalization or metal ion doping enable control over the material structure and CO
2
capture performance. Discrepancies in the kinetics of CO
2
capture on fly ash-based aluminosilicate materials arise from variations in reaction products and capture conditions. In-depth theoretical research and promoting large-scale engineering applications hold significant promise
in guiding the development of carbon capture technologies.
粉煤灰CO2捕集硅铝酸盐材料吸附动力学
fly ashCO2 capturealuminosilicate materialsadsorption kinetics
OSCHATZ M, ANTONIETTI M. A search for selectivity to enable CO2 capture with porous adsorbents [J]. Energy & Environmental Science, 2018, 11(1): 57-70.
Global Monitoring Laboratory. Monthly Average Mauna Loa CO2 [EB/OL]. (2024-3-5)[2024-4-2]. https://gml.noaa.gov/ccgg/trends/https://gml.noaa.gov/ccgg/trends/
THEO W L, LIM J S, HASHIM H, et al. Review of pre-combustion capture and ionic liquid in carbon capture and storage [J]. Applied Energy, 2016, 183: 1633-1663.
SHI X Y, LEE G A, LIU S H, et al. Water-stable MOFs and hydrophobically encapsulated MOFs for CO2 capture from ambient air and wet flue gas [J]. Materials Today, 2023, 65: 207-226.
OLAJIRE A A. Recent advances in the synthesis of covalent organic frameworks for CO2 capture [J]. Journal of CO2 Utilization, 2017, 17: 137-161.
CHOWDHURY A, BHATTACHARJEE S, CHATTERJEE R, et al. A new nitrogen rich porous organic polymer for ultra-high CO2 uptake and as an excellent organocatalyst for CO2 fixation reactions [J]. Journal of CO2 Utilization, 2022, 65: 102236.
CHEN C M, YU J X, SONG G S, et al. Desorption performance of commercial zeolites for temperature-swing CO2 capture [J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 110253.
GARGIULO N, PELUSO A, APREA P, et al. CO2 adsorption on polyethylenimine-functionalized SBA-15 mesoporous silica: Isotherms and modeling [J]. Journal of Chemical & Engineering Data, 2014, 59(3): 896-902.
GARGIULO N, PEPE F, CAPUTO D. Modeling carbon dioxide adsorption on polyethylenimine-functionalized TUD-1 mesoporous silica [J]. Journal of Colloid and Interface Science, 2012, 367(1): 348-354
MATSUO Y, YANAGISAWA A, YAMASHITA Y. A global energy outlook to 2035 with strategic considerations for Asia and Middle East energy supply and demand interdependencies [J]. Energy Strategy Reviews, 2013, 2(1): 79-91.
BELTRAO-NUNES A P, SENNOUR R, ARUS V A, et al. CO2 capture by coal ash-derived zeolites-roles of the intrinsic basicity and hydrophilic character [J]. Journal of Alloys and Compounds, 2019, 778: 866-877.
GOLLAKOTA A R K, VOLLI V, SHU C M. Progressive utilisation prospects of coal fly ash: A review [J]. The Science of the Total Environment, 2019, 672: 951-989.
孙浩, 马志斌, 路广军, 等. 粉煤灰碱激发制备地质聚合物研究进展[J]. 洁净煤技术, 2023, 29(11): 140-153.
SUN H, MA Z B, LU G J, et al, A review on geopolymer preparation by alkali activation of coal fly [J]. Clean Coal Technology, 2023, 29(11): 140-153.
ERUNKULU I O, MALUMBELA G, OLADIJO O P. Feasibility of geopolymer synthesis using soda ash in copper slag blended fly ash-based geopolymer [J]. Materials Today: Proceedings, 2023, 86: 41-46.
黄齐真, 石林, 何柳青. 粉煤灰的农业高效资源化研究与应用[J]. 非金属矿, 2021, 44(4): 12-14+18.
HUANG Q Z, SHI L, HE L Q. Study and application on efficient resource utilization of coal fly ash in agriculture [J]. Non-Metallic Mines, 2021, 44(4): 12-14+18.
汪振双, 苏昊林, 周梅. CaO-Al2O3-SiO2系粉煤灰微晶玻璃的制备及其性能[J]. 材料热处理学报, 2016, 37(1): 29-33.
WANG Z S, SU H L, ZHOU M. Preparation and properties of CaO-Al2O3-SiO2 glass-ceramics from fly ash by sintering [J]. Transactions of Materials and Heat Treatment, 2016, 37(1): 29-33.
孙红娟, 曾丽, 彭同江. 粉煤灰高值化利用研究现状与进展[J]. 材料导报, 2021, 35(3): 3010-3015.
SUN H J, ZENG L, PENG T J. Research status and progress of high-value utilization of coal fly ash [J]. Materials Reports, 2021, 35(3): 3010-3015.
纪龙. 利用粉煤灰矿化封存二氧化碳的研究[D]. 北京:中国矿业大学, 2018.
JI L. Carbon dioxide sequestration by mineralisation of coal fly ash [D]. Beijing: China University of Mining and Technology, 2018.
王彬宇, 李莉, 李菁, 等. 用工业固体废料合成沸石分子筛的研究进展[J]. 高等学校化学学报, 2021, 42(1): 40-59.
WANG B Y, LI L, LI Q, et al. Research progress in synthesis of zeolite molecular sieves from industrial solid wastes [J]. Chemical Journal of Chinese Universities, 2021, 42(1): 40-59.
LIU W Z, TENG L M, ROHANI S, et al. CO2 mineral carbonation using industrial solid wastes: A review of recent developments [J]. Chemical Engineering Journal, 2021, 416: 129093.
MENG J L, LIAO W J, ZHANG G Q. Emerging CO2-mineralization technologies for co-utilization of industrial solid waste and carbon resources in China [J]. Minerals, 2021, 11(3): 274.
DINDI A, QUANG D V, VEGA L F, et al. Applications of fly ash for CO2 capture, utilization, and storage [J]. Journal of CO2 Utilization, 2019, 29: 82-102.
张镱键. 粉煤灰合成沸石分子筛及其CO2吸附性能研究[D]. 西安: 西安理工大学, 2021.
ZHANG Y J. Study on synthesis of zeolites from fly ash and CO2 performance [D]. Xi’an: Xi’an University of Technology, 2021.
王倩, 李神勇, 康帅, 等. 粉煤灰分质高效利用预处理技术的研究进展[J]. 化工学报, 2023, 74(3): 1010-1032.
WANG Q, LI S Y, KANG S, et al. Research progress of pretreatment technology for efficient utilization of coal ash [J]. CIESC Journal, 2023, 74(3): 1010-1032.
王震, 黄珍丽, 王培根, 等. 电厂粉煤灰活化工艺参数的研究[J]. 应用化工, 2016, 45(6): 1100-1102+1106.
WANG Z, HUANG Z L, WANG P G, et al. Study on process parameters for activating power plant fly ash [J]. Applied Chemical Industry, 2016, 45(6): 1100-1102+1106.
孙延文, 王连勇, 杨湘澜, 等. 粉煤灰基沸石的制备及应用研究进展[J]. 硅酸盐通报, 2021, 40(1): 123-132.
SUN Y W, WANG L Y, YANG X L, et al. Research progress on synthesis and application of zeolite based on coal fly ash [J]. Bulletin of the Chinese Ceramic Society, 2021, 40(1): 123-132.
秦身钧, 徐飞, 崔莉, 等. 煤型战略关键微量元素的地球化学特征及资源化利用[J]. 煤炭科学技术, 2022, 50(3): 1-38.
QIN S J, XU F, CUI L, et al. Geochemistry characteristics and resource utilization of strategically critical trace elements from coal-related resources [J]. Coal Science and Technology, 2022, 50(3): 1-38.
ZHANG Q, LIANG X L, PENG D, et al. Development of a fly ash derived Li4SiO4-based sorbent for CO2 capture at high temperatures [J]. Thermochimica Acta, 2018, 669: 80-87.
YANG Y D, CHEN Z Q, SUN X D, et al. Li4SiO4 adsorbent derived from industrial biomass fly ash for high-temperature CO2 capture [J]. Fuel, 2023, 337: 126853.
LIU Y F, WANG Z Q, ZHAO W H, et al. Hierarchical porous nanosilica derived from coal gasification fly ash with excellent CO2 adsorption performance [J]. Chemical Engineering Journal, 2023, 455: 140622.
汤明亮. 粉煤灰基气凝胶及其复合材料的制备与吸附性能研究[D]. 武汉: 华中科技大学, 2022.
TANG M L, Preparation and adsorption performance of fly ash-based aerogel and its composites [D]. Wuhan: Huazhong University of Science and Technology, 2022.
LIN Y J, CHEN J C. Resourcization and valorization of waste incineration fly ash for the synthesis of zeolite and applications [J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106549.
ZHANG Z H, XIAO Y F, WANG B D, et al. Waste is a misplayed resource: Synthesis of zeolites from fly ash for CO2 capture [J]. Energy Procedia, 2017, 114: 2537-2544.
DE AQUINO T F, ESTEVAM S T, VIOLA V O, et al. CO2 adsorption capacity of zeolites synthesized from coal fly ashes [J]. Fuel, 2020, 276: 118143.
POPOVA M, BOYCHEVA S, LAZAROVA H, et al. VOC oxidation and CO2 adsorption on dual adsorption/catalytic system based on fly ash zeolites [J]. Catalysis Today, 2020, 357: 518-525.
张中华. 粉煤灰制备吸附剂捕集CO2的研究[J]. 中国电机工程学报, 2021, 41(4): 1227-1233+1529.
ZHANG Z H. Development of fly-ash-based sorbents for CO2 capture [J]. Proceedings of the CSEE, 2021, 41(4): 1227-1233+1529.
竹涛, 苑博, 郝伟翔, 等. 煤基固废合成沸石分子筛捕集CO2研究进展[J]. 洁净煤技术, 2022, 28(1): 58-69.
ZHU T, YUAN B, HAO W X, et al. Research progress on CO2 capture by synthesizing zeolite from coal-based solid waste [J]. Clean Coal Technology, 2022, 28(1): 58-69.
KUMAR S, SRIVASTAVA R, KOH J. Utilization of zeolites as CO2 capturing agents: Advances and future perspectives [J]. Journal of CO2 Utilization, 2020, 41: 101251.
VERRECCHIA G, CAFIERO L, DE CAPRARIIS B, et al. Study of the parameters of zeolites synthesis from coal fly ash in order to optimize their CO2 adsorption [J]. Fuel, 2020, 276: 118041.
LEE K M, JO Y M. Synthesis of zeolite from waste fly ash for adsorption of CO2 [J]. Journal of Material Cycles and Waste Management, 2010, 12(3): 212-219.
CHANAPATTHARAPOL K C, KRACHUAMRAM S, YOUNGME S. Study of CO2 adsorption on iron oxide doped MCM-41 [J]. Microporous Mesoporous Mater, 2017, 245: 8-15.
CHE S, FANG X, LI S Y, et al. Modification of potassium chabazites derived from fly ash by dosing extra cations: Promoted CO2 adsorption capacities and fine-tuned frameworks [J]. Zeitschrift FüR Anorganische Und Allgemeine Chemie, 2019, 645(24): 1365-1371.
JADHAV P D, CHATTI R V, BINIWALE R B, et al. Monoethanol amine modified zeolite 13X for CO2 adsorption at different temperatures [J]. Energy & Fuels, 2007, 21(6): 3555-3559.
BEZERRA D P, DA-SILVA F W M, DE-MOURA P A S, et al. CO2 adsorption in amine-grafted zeolite 13X [J]. Applied Surface Science, 2014, 314: 314-321.
DINDI A, VIET QUANG D, ABU-ZAHRA M R M. CO2 adsorption testing on fly ash derived cancrinite-type zeolite and its amine-functionalized derivatives [J]. Environmental Progress & Sustainable Energy, 2019, 38(1): 77-88.
BUKALAK D, MAJCHRZAK-KUCĘBA I, NOWAK W. Assessment of the sorption capacity and regeneration of carbon dioxide sorbents using thermogravimetric methods [J]. Journal of Thermal Analysis and Calorimetry, 2013, 113(1): 157-160.
KIM H, JANG H D, CHOI M. Facile synthesis of macroporous Li4SiO4 with remarkably enhanced CO2 adsorption kinetics [J]. Chemical Engineering Journal, 2015, 280: 132-137.
HU Y C, LIU W Q, YANG Y D, et al. Synthesis of highly efficient, structurally improved Li4SiO4 sorbents for high-temperature CO2 capture [J]. Ceramics International, 2018, 44(14): 16668-16677.
TONG Y C, QIN C L, ZHU L Y, et al. From spent lithium-ion batteries to low-cost Li4SiO4 sorbent for CO2 capture [J]. Environmental Science & Technology, 2022, 56(9): 5734-5742.
CHEN S Z, DAI J Z, QIN C L, et al. Adsorption and desorption equilibrium of Li4SiO4-based sorbents for high-temperature CO2 capture [J]. Chemical Engineering Journal, 2022, 429: 132236.
HU Y C, LIU W Q, YANG Y D, et al. CO2 capture by Li4SiO4 sorbents and their applications: Current developments and new trends [J]. Chemical Engineering Journal, 2019, 359: 604-625.
IZQUIERDO M T, GASQUET V, SANSOM E, et al. Lithium-based sorbents for high temperature CO2 capture: Effect of precursor materials and synthesis method [J]. Fuel, 2018, 230: 45-51.
MU Y Q. CO2 high-temperature sorbent (Al, Fe, Ti) CO-doped Li4SiO4 from fly ash-derived SiO2 aerogel: In-situ synthesis, enhanced capture ability and long cycle stability [J]. Fuel Processing Technology, 2023.
QI Z, HAN D Y, YANG L, et al. Analysis of CO2 sorption/desorption kinetic behaviors and reaction mechanisms on Li4SiO4 [J]. AIChE Journal, 2013, 59(3): 901-911.
WANG K, ZHOU Z Y, ZHAO P F, et al. Molten sodium-fluoride-promoted high-performance Li4SiO4-based CO2 sorbents at low CO2 concentrations [J]. Applied Energy, 2017, 204: 403-412.
OLIVARES-MARÍN M, DRAGE T C, MAROTO-VALER M M. Novel lithium-based sorbents from fly ashes for CO2 capture at high temperatures [J]. International Journal of Greenhouse Gas Control, 2010, 4(4): 623-629.
SANNA A, RAMLI I, MERCEDES M M. Development of sodium/lithium/fly ash sorbents for high temperature post-combustion CO2 capture [J]. Applied Energy, 2015, 156: 197-206.
YANG X W, LIU W Q, SUN J, et al. Preparation of novel Li4SiO4 sorbents with superior performance at low CO2 concentration [J]. ChemSusChem, 2016, 9(13): 1607-1613.
IDA J, XIONG R, LIN Y S. Synthesis and CO2 sorption properties of pure and modified lithium zirconate [J]. Separation and Purification Technology, 2004, 36(1): 41-51.
SANNA A, MAROTO-VALER M M. Potassium-based sorbents from fly ash for high-temperature CO2 capture [J]. Environmental Science and Pollution Research, 2016, 23(22): 22242-22252.
YAN F, JIANG J G, TIAN S C, et al. A Green and facile synthesis of ordered mesoporous nanosilica using coal fly ash [J]. ACS Sustainable Chemistry & Engineering, 2016, 4(9): 4654-4661.
ZHANG S Q, RAVI S, LEE Y R, et al. Fly ash-derived mesoporous silica foams for CO2 capture and aqueous Nd3+ adsorption [J]. Journal of Industrial and Engineering Chemistry, 2019, 72: 241-249.
JU T Y, MENG Y, HAN S Y, et al. A green and multi-win strategy for coal fly ash disposal by CO2 fixation and mesoporous silica synthesis [J]. Science of the Total Environment, 2023, 883: 163822.
GUO B H, ZHANG J C, WANG Y L, et al. Study on CO2 adsorption capacity and kinetic mechanism of CO2 adsorbent prepared from fly ash [J]. Energy, 2023, 263: 125764.
KESHAVARZ L, GHAANI M R, MACELROY J M D, et al. A comprehensive review on the application of aerogels in CO2-adsorption: Materials and characterisation [J]. Chemical Engineering Journal, 2021, 412: 128604.
YAY B, GIZLI N. A review on silica aerogels for CO2 capture applications [J]. Pamukkale University Journal of Engineering Sciences, 2019, 25(7): 907-913.
KONG Y, SHEN X D, CUI S, et al. Facile synthesis of an amine hybrid aerogel with high adsorption efficiency and regenerability for air capture via a solvothermal-assisted sol-gel process and supercritical drying [J]. Green Chemistry, 2015, 17(6): 3436-3445.
王宝民, 马海楠, 韩瑜, 等. 粉煤灰制备SiO2气凝胶及其复合材料的研究进展[J]. 材料导报, 2012, 26(9): 42-45.
WANG B M, MA H N, HAN Y, et al, Research progress of preparation of silica aerogel and composite materials from fly ash [J]. Materials Reports, 2012, 26(9): 42-45.
SHI F, LIU J X, SONG K,et al. Cost-effective synthesis of silica aerogels from fly ash via ambient pressure drying [J]. Journal of Non-Crystalline Solids, 2010, 356(43): 2241-2246.
TAN M M, LI X Y, FENG Y, et al. Fly ash-derived mesoporous silica with large pore volume for augmented CO2 capture [J]. Fuel, 2023, 351: 128874.
PARK J E, YOUN H K, YANG S T, et al. CO2 capture and MWCNTs synthesis using mesoporous silica and zeolite 13X collectively prepared from bottom ash [J]. Catalysis Today, 2012, 190(1): 15-22.
PANEK R, WDOWIN M, FRANUS W, et al. Fly ash-derived MCM-41 as a low-cost silica support for polyethyleneimine in post-combustion CO2 capture [J]. Journal of CO2 Utilization, 2017, 22: 81-90.
MIRICIOIU M, NICULESCU V C, FILOTE C, et al. Coal fly ash derived silica nanomaterial for MMMs—Application in CO2/CH4 separation [J]. Membranes, 2021, 11(2): 78.
FAN L Y, MU Y Q, FENG J L, et al. In-situ Fe/Ti doped amine-grafted silica aerogel from fly ash for efficient CO2 capture: Facile synthesis and super adsorption performance [J]. Chemical Engineering Journal, 2023, 452: 138945.
缪应菊, 李琳, 缪应纯, 等. 高硅粉煤灰基二氧化硅气凝胶的物理表征及其CO2捕集应用[J]. 中国测试, 2020, 46(5): 51-56+64.
MIAO Y J, LI L, MIAO Y C, et al. Characterization of silica aerogels synthesized from high-Si fly ash and its application in CO2 capture [J]. China Measurement & Test, 2020, 46(5): 51-56+64.
陈旭东. 粉煤灰制备硅基分子筛的合成优化及其CO2 吸附性能研究[D]. 沈阳:东北大学, 2019.
CHEN X D. Study optimization of silica-based molecular sieves prepared from fly ash and their CO2 adsorption performance [D]. Shenyang: Northeastern University, 2019.
BISONE L, BITTANTI S, CANEVESE S, et al. A simple combined dynamic-equilibrium model of CO2 capture by a pelleted zeolite sorbent [J]. IFAC-Papers on Line, 2021, 54(3): 627-632.
JEDLI H, ALMONEEF M M, MBAREK M, et al. Adsorption of CO2 onto zeolite ZSM-5: Kinetic, equilibrium and thermodynamic studies [J]. Fuel, 2022, 321: 124097.
SHI Q. Molecular dynamics simulation of diffusion and separation of CO2/CH4/N2 on MER zeolites [J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1531-1539.
HERNÁNDEZ-TAPIA V, VERA E, RAMÍREZ-ZAMORA R M, et al. Cyclic CO2 capture behavior of slag-derived Li4SiO4: A kinetic analysis of CO2 desorption [J]. Fuel, 2023, 340: 127518.
AL-ABSI A A, MOHAMEDALI M, DOMIN A, et al. Development of in situ polymerized amines into mesoporous silica for direct air CO2 capture [J]. Chemical Engineering Journal, 2022, 447: 137465.
GUO B H, WANG Y L, QIAO X L, et al. Experiment and regeneration kinetic model study on CO2 adsorbent prepared from fly ash [J]. Chemical Engineering Journal, 2021, 421: 127865.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构