浏览全部资源
扫码关注微信
上海工程技术大学 机械与汽车工程学院,上海 201620
郑植(1997—),硕士研究生,研究方向为新型能源热化学利用,E-mail:1309319021@qq.com。
沈骏(1986—),博士,副教授,研究方向为新型能源热化学利用,E-mail:ffcc1107@126.com。
纸质出版日期:2024-11-25,
收稿日期:2024-01-03,
修回日期:2024-02-20,
移动端阅览
郑植,沈骏,刘雪松等.固体燃料低碳燃烧技术研究进展[J].低碳化学与化工,2024,49(11):70-80.
ZHENG Zhi,SHEN Jun,LIU Xuesong,et al.Research progress of solid fuel low-carbon combustion technologies[J].Low-carbon Chemistry and Chemical Engineering,2024,49(11):70-80.
郑植,沈骏,刘雪松等.固体燃料低碳燃烧技术研究进展[J].低碳化学与化工,2024,49(11):70-80. DOI: 10.12434/j.issn.2097-2547.20240006.
ZHENG Zhi,SHEN Jun,LIU Xuesong,et al.Research progress of solid fuel low-carbon combustion technologies[J].Low-carbon Chemistry and Chemical Engineering,2024,49(11):70-80. DOI: 10.12434/j.issn.2097-2547.20240006.
相较于传统燃烧方式,固体燃料低碳燃烧技术不仅能更好地提升能源的使用效率,还可以在一定程度上减少环境污染。目前较为成熟的固体燃料低碳燃烧技术包括煤掺氨燃烧、煤掺生物质燃烧、化学链燃烧和富氧燃烧。以煤掺氨燃烧的掺氨比、煤掺生物质燃烧的生物质掺混比、化学链燃烧的载氧体及反应条件、富氧燃烧的反应条件及污染物排放等作为切入点,综述了固体燃料低碳燃烧技术的发展现状,并对其未来的发展进行了展望。对比不同形式煤燃烧的工况,发现掺氨比、生物质掺混比对煤燃烧过程氮氧化物排放量影响较大,甚至会影响锅炉的运行环境和整体效益。化学链燃烧和富氧燃烧可以提高CO
2
捕集效率,促进碳的转化,提高氧释放率,进而提高化学反应速率。
Compared with traditional combustion methods
solid fuel low-carbon combustion technologies can not only improve energy efficiency
but also reduce environmental pollution to a certain extent. Currently
the mature solid fuel low-carbon combustion technologies include ammonia co-firing with coal
coal-biomass co-combustion
chemical looping combustion and oxygen-enriched combustion. Taking the ammonia mixing ratio of ammonia co-firing with coal
the biomass mixing ratio of coal-biomass co-combustion
the oxygen carrier and reaction conditions of chemical looping combustion
the reaction conditions and pollutant emissions of oxygen-enriched combustion as entry points
the current development status of solid fuel low-carbon combustion technology was summarized and its future development was prospected. Comparing the working conditions of different forms of coal combustion
it is found that the ammonia mixing ratio and biomass mixing ratio have a significant impact on the nitr
ogen oxides emissions during coal combustion
and even affect the operating environment and overall efficiency of the boiler. Chemical looping combustion and oxygen-enriched combustion can improve CO
2
capture efficiency
promote carbon conversion
increase oxygen release rate
and thus increase chemical reaction rate.
煤掺氨燃烧煤掺生物质燃烧化学链燃烧富氧燃烧污染物控制
ammonia co-firing with coalcoal-biomass co-combustionchemical looping combustionoxygen-enriched combustionpollutant control
武国庆, 薛晓舟, 闵剑, 等. 全球能源低碳转型下生物液体燃料产业现状与展望[J]. 中国生物工程杂志, 2024, 44(1): 88-97.
WU G Q, XUE X Z, MIN J, et al. Status and prospects of liquid biofuel industry under the background of global low-carbon energy transition [J]. China Biotechnology, 2024, 44(1): 88-97.
张星, 王子兵, 徐杰, 等. 不同气体燃料燃烧特性及热特性分析 [J]. 节能, 2022, 41(2): 15-19.
ZHANG X, WANG Z B, XU J, et al. Analysis of combustion characteristics and thermal characteristics of different types of gas fuels [J]. Energy Conservation, 2022, 41(2): 15-19.
刘峰, 冯少波, 赵兵涛, 等. 氨及掺氨燃烧过程机理与特性研究进展[J]. 化学工业与工程, 2023, 40(6): 107-118.
LIU F, FENG S B, ZHAO B T, et al. Advances in process characteristics and mechanisms of ammonia combustion and co-firing [J]. Chemical Industry and Engineering, 2023, 40(6): 107-118.
BUI M, ADJIMAN C S, BARDOW A, et al. Carbon capture and storage (CCS): The way forward [J]. Energy & Environmental Science, 2018, 11(5): 1062-1176.
ABANADES J C, ARIAS B, LYNGFELT A, et al. Emerging CO2 capture systems [J]. International Journal of Greenhouse Gas Control, 2015, 40: 126-166.
HADJIPASCHALIS I, KOURTIS G, POULLIKKAS A. Assessment of oxyfuel power generation technologies [J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2637-2644.
ZHENG C G, LIU Z H, XIANG J, et al. Fundamental and technical challenges for a compatible design scheme of oxyfuel combustion technology [J]. Engineering, 2015, 1(1): 139-149.
吕强, 王儒儒, 李长兴, 等. 燃煤锅炉掺氨燃烧研究进展[J]. 节能技术, 2023, 41(4): 324-331.
LYU Q, WANG R R, LI C X, et al. Research progress on co-firing ammonia in coal-fired boiler [J]. Energy Conservation Technology, 2023, 41(4): 324-331.
赵紫峰. 原油储存罐废气/空气双层多孔介质预混燃烧特性的CFD分析[D]. 上海: 东华大学, 2022.
ZHAO Z F. CFD Study on pre-mixed combustion of crude-oil-tank off-gas/air in double-layered porous medias [D]. Shanghai: Donghua University, 2022.
ZHANG J W, ITO T, ISHII H, et al. Numerical investigation on ammonia co-firing in a pulverized coal combustion facility: Effect of ammonia co-firing ratio [J]. Fuel, 2020, 267: 117166.
王一坤, 邓磊, 王涛, 等. 大比例掺烧NH3对燃煤机组影响分析[J]. 洁净煤技术, 2022, 28(3): 185-192.
WANG Y K, DENG L, WANG T, et al. Influence of large scale coupled NH3 power generation on coal-fired units [J]. Clean Coal Technology, 2022, 28(3): 185-192.
LYU Q, WANG R R, DU Y B, et al. Numerical study on coal/ammonia co-firing in a 600 MW utility boiler [J]. International Journal of Hydrogen Energy, 2023, 48(45): 17293-17310.
OKAFOR E C, TSUKAMOTO M, HAYAKAWA A, et al. Influence of wall heat loss on the emission characteristics of premixed ammonia-air swirling flames interacting with the combustor wall [J]. Proceedings of the Combustion Institute, 2021, 38(4): 5139-5146.
CHEN P, WANG H C, JIANG B Y, et al. An experimental and theoretical study of NO heterogeneous reduction in the reduction zone of ammonia co-firing in a coal-fired boiler: Influence of CO [J]. Fuel Processing Technology, 2022, 231: 107184.
CHEN P, YAO F, WANG P P, et al. The effect of ammonia co-firing on NO heterogeneous reduction in the high-temperature reduction zone of coal air-staging combustion: Experimental and quantum chemistry study [J]. Combustion and Flame, 2022, 237: 111857.
CHEN P, JIANG B Y, WANG H C. et al. Experimental and theoretical calculations study on heterogeneous reduction of NO by char/NH3 in the reduction zone of ammonia co-firing with pulverized coal: Influence of mineral Fe [J]. Fuel, 2022, 310(5): 122374.
牛涛, 张文振, 刘欣, 等. 燃煤锅炉氨煤混合燃烧工业尺度试验研究[J]. 洁净煤技术, 2022, 28(3): 193-200.
NIU T, ZHANG W Z, LIU X, et al. Industrial-scale experimental investigation of ammonia-coal cofiring in coal-fired boiler [J]. Clean Coal Technology, 2022, 28(3): 193-200.
YAMAMOTO A, KIMOTO M, OZAWA Y, et al. Basic co-firing characteristics of ammonia with pulverized coal in a single burner test furnace [C]//2018 AIChE Annual Meeting. AIChE, 2018.
TAMURA M, GOTOU T, ISHII H, et al. Experimental investigation of ammonia combustion in a bench scale 1.2 MW-thermal pulverised coal firing furnace [J]. Applied Energy, 2020, 277: 115580.
ISHIHARA S, ZHANG J W, ITO T. Numerical calculation with detailed chemistry on ammonia co-firing in a coal-fired boiler: Effect of ammonia co-firing ratio on NO emissions [J]. Fuel, 2020, 274: 117742.
ISHIHARA S, ZHANG J W, ITO T. Numerical calculation with detailed chemistry of effect of ammonia co-firing on NO emissions in a coal-fired boiler [J]. Fuel, 2020, 266: 116924.
CARDOSO J S, SILVA V, DANIELA E, et al. Numerical modelling of ammonia-coal co-firing in a pilot-scale fluidized bed reactor: Influence of ammonia addition for emissions control [J]. Energy Conversion and Management, 2022, 254: 115226
闫亚龙, 刘欣玮. 生物质与煤混合燃烧发电技术研究进展[J]. 新能源科技, 2023, 4(1): 32-38.
YAN Y L, LIU X W. Research progress of biomass and coal co-combustion power generation technology [J]. New Energy Technology, 2023, 4(1): 32-38.
杨卧龙, 倪煜, 雷鸿. 燃煤电站生物质直接耦合燃烧发电技术研究综述[J]. 热力发电, 2021, 50(2): 18-25.
YANG W L, NI Y, LEI H. Biomass direct coupled combustion power generation technology for coal fired power station: A review [J]. Thermal Power Generation, 2021, 50(2): 18-25.
PANG S S. Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals [J]. Biotechnology Advances, 2019, 37(4): 589-597.
KATARZYNA J P H. Biomass gasification and Polish coal-fired boilers for process of reburning in small boilers [J]. Journal of Central South University, 2013, 20(6): 1623-1630.
AGBOR E, ZHANG X L, KUMAR A. A review of biomass co-firing in North America [J]. Renewable and Sustainable Energy Reviews, 2014, 40: 930-943.
PRIYANTO E D, MATSUNAGA Y, UENO S, et al. Co-firing high ratio of woody biomass with coal in a 150-MW class pulverized coal boiler: Properties of the initial deposits and their effect on tube corrosion [J]. Fuel, 2017, 208: 714-721.
刘向民, 张津铭, 张涛, 等. 燃煤流化床锅炉耦合含碳废弃物燃烧技术研究进展[J/OL]. 洁净煤技术, 1-15[2023-12-15]. https://doi.org/10.13226/j.issn.1006-6772.23072501https://doi.org/10.13226/j.issn.1006-6772.23072501.
LIU X M, ZHANG J M, ZHANG T, et al. A review of coal-fired fluidized bed boiler coupled with carbon-containing waste combustion technology [J/OL]. Clean Coal Technology, 1-15[2023-12-15]. https://doi.org/10.13226/j.issn.1006-6772. 23072501https://doi.org/10.13226/j.issn.1006-6772.23072501.
倪玉国. 电站锅炉尾部低温受热面铵盐积灰特性与处理研究及液态排渣炉积灰研究[D]. 杭州: 浙江大学, 2023.
NI Y G. Research on characteristics and treatment of ammonium salt fouling on the low-temperature heating surface at the tail of power plant boilers and fouling in a slag-tapping boiler [D]. Hangzhou: Zhejiang University, 2023.
肖志前, 宋杰, 宋景慧. 生物质锅炉混煤掺烧对锅炉经济性及稳定性的影响[J]. 广东电力, 2015, 28(7): 10-16+23.
XIAO Z Q, SONG J, SONG J H. Affect on boiler economy and stability by blended coal combustion of biomass boiler [J]. Guangdong Electric Power, 2015, 28(7): 10-16+23.
张小桃, 刘莹, 丁全斌. 生物质气与煤混燃锅炉燃烧性能模拟研究[J]. 热力发电, 2016, 45(8): 14-19.
ZHANG X T, LIU Y, DING Q B. Simulation research on combustion performance of boiler co-firing biomass gas with coal [J]. Thermal Power Generation, 2016, 45(8): 14-19.
王树森. 高加热速率下纤维组分对生物质及其掺煤燃烧特性的影响研究[D]. 武汉: 华中科技大学, 2022.
WANG S S. The effects of biomass fiber components on the combustion characteristics of biomass and biomass-coal mixtures under high heating rate conditions [D]. Wuhan: Huazhong University of Science and Technology, 2022.
倪刚, 杨章宁, 冉燊铭, 等. 生物质与煤直接耦合燃烧试验研究[J]. 洁净煤技术, 2021, 27(3): 198-203.
NI G, YANG Z N, RAN S M, et al. Experimental study on direct coupled combustion of biomass and coal [J]. Clean Coal Technology, 2021, 27(3): 198-203.
马彦花, 马英, 和婷, 等. O2/CO2气氛下生物质混煤燃烧特性数值模拟[J]. 能源与节能, 2021, (6): 2-6.
MA Y H, MA Y, HE T, et al. Numerical simulation of combustion characteristics of biomass mixed coal in O2/CO2 atmosphere [J]. Energy and Energy Conservation, 2021, (6): 2-6.
YI B J, CHEN M J, GAO Y, et al. Investigation on the co-combustion characteristics of multiple biomass and coal under O2/CO2 condition and the interaction between different biomass [J]. Journal of Environmental Management, 2023, 325: 116498.
谭厚章, 刘洋, 王学斌, 等. 生物质成型燃料规模化掺烧技术及应用分析[J]. 洁净煤技术, 2021, 27(S2): 272-277.
TAN H Z, LIU Y, WANG X B, et al. High-efficiency and large-scale biomass briquette co-firing and its application [J]. Clean Coal Technology, 2021, 27(S2): 272-277.
李振山, 陈虎, 李维成, 等. 化学链燃烧中试系统的研究进展与展望[J]. 发电技术, 2022, 43(4): 544-561.
LI Z S, CHEN H, LI W C, et al. Research status and prospect of chemical looping combustion pilot systems [J]. Power Generation Technology, 2022, 43(4): 544-561.
BROWN T A, DENNIS J S, SCOTT S A, et al. Gasification and chemical-looping combustion of a lignite char in a fluidized bed of iron oxide [J]. Energy Fuels, 2010, 24(5): 3034-3048
QIN W, CHEN S B, ZHU J Q, et al. Hydrogen production by chemical looping gasification of corn stalk driven by a tert-butanol solution [J]. Chemical Research in Chinese Universities, 2019, 35(3): 1012-1017.
AN M, GUO Q J, MA J J, et al. Chemical looping gasification of coal with CuFe2O4 oxygen carriers: The reaction characteristics and structural evolution [J]. The Canadian Journal of Chemical Engineering, 2020, 98(7): 1512-1524.
高行龙, 安凤霞, 胡耘, 等. 碱木质素强化煤焦粉化学链气化实验研究[J]. 燃料化学学报(中英文), 2024, 52(7): 995-1005.
GAO X L, AN F X, HU Y, et al. Experimental study on alkali lignin enhanced chemical loopinggasification of pulverized coal char [J]. Journal of Fuel Chemistry and Technology, 2024, 52(7): 995-1005.
MATTISSON T, LYNGFELT A, LEION H. Chemical-looping with oxygen uncoupling for combustion of solid fuels [J]. International Journal of Greenhouse Gas Control, 2009, 3(1): 11-19.
MAGNUS R, LYNGFELT A, MATTISSON T. CaMn0.875Ti0.125O3 as oxygen carrier for chemical-looping combustion with oxygen uncoupling (CLOU)—Experiments in a continuously operating fluidized-bed reactor system [J]. International Journal of Greenhouse Gas Control, 2011, 5(2): 356-366.
ADANEZ J, ABAD A, GARCIA-LABIANO F, et al. Progress in chemical-looping combustion and reforming technologies [J]. Progress in Energy and Combustion Science, 2012, 38(2): 215-282.
ROUX S, BENSAKHRIA A, ANTONINI G. Study and improvement of the regeneration of metallic oxides used as oxygen carriers for a new combustion process [J]. International Journal of Chemical Reactor Engineering, 2006, 4(1).
KUANG C, WANG S Z, LUO M, et al. Reactivity study and kinetic evaluation of CuO-based oxygen carriers modified by three different ores in chemical looping with oxygen uncoupling (CLOU) process [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 54-63.
TRI H N, PASCALE D , LUC V, et al. Machine learning for integrating combustion chemistry in numerical simulations [J]. Energy and AI, 2021, 5: 100082.
徐国强, 韩龙, 巫平江, 等. 烟煤氧解耦化学链气化及氮氧化物生成机理[J]. 燃烧科学与技术, 2021, 27(5): 569-579.
XU G Q, HAN L, WU P J, et al. Mechanism of chemical looping gasification and nox generation of bituminous coal in oxygen uncoupling mode [J]. Combustion Science and Technology, 2021, 27(5): 569-579.
WANG K, WANG F Q, YU Q B, et al. Understanding of the oxygen uncoupling characteristics of Cu-Fe composite oxygen carriers for chemical-looping gasification [J]. Fuel Processing Technology, 2021, 218: 106844.
LI C X, LI W J, LIAO Y F, et al. Oxygen uncoupling chemical looping gasification of biomass over heterogeneously doped La-Fe-O perovskite-type oxygen carriers [J]. Fuel Processing Technology, 2023, 250: 107883.
ABUELGASIM S, WANG W J, LI T L, et al. The effect of alkali and alkaline earth metals oxides addition on oxygen uncoupling rate of copper-based oxygen carrier: A kinetic and experimental investigations [J]. Separation and Purification Technology, 2021, 275(1): 119176.
MA J C, TIAN X, ZHAO H B, et al. Effect of coal ash on the performance of Cuo@TiO2-Al2O3 in chemical looping with oxygen uncoupling [J]. Fuel Processing Technology, 2021, 221: 106935.
张智羽. 富氧燃煤机组多因素参数优化及与塔式太阳能耦合特性研究[D]. 北京: 华北电力大学, 2020.
ZHANG Z Y. Optimization of multi-factor parameters and coupling characteristics of oxyfuel coal-fired units with tower solar energy [D]. Beijing: North China Electric Power University, 2020.
SHAN S Q, ZHOU Z J, WANG Z H, et al. Radiative energy flux characteristics and model an alysis for one-dimensional fixed-bed oxy-coal combustion [J]. Journal of Zhejiang University-SCIENCE A, 2019, 20(6): 431-446.
ZHANG Z Y, ZHAI R R, WANG X W , et al. Sensitivity analysis and optimization of operating parameters of an oxyfuel combustion power generation system based on single-factor and orthogonal design methods [J]. Energies, 2020, 1(4): 998.
陈德敏, 李宁, 刘骁, 等. 富氧燃烧条件对加热炉传热特性影响[J]. 钢铁, 2024, 59(2): 173-184.
CHEN D M, LI N, LIU X, et al. Effect of oxygen-enriched combustion conditions on heat transfer characteristics of reheating furnace [J]. Iron and Stee, 2024, 59(2): 173-184.
赵林, 王长安, 孙瑞金, 等. 富氧分级条件下高碱煤燃烧积灰与NOx生成规律实验研究[J]. 西安交通大学学报, 2023, 57(8): 76-85.
ZHAO L, WANG C A, SUN R J, et al. An experimental study on ash deposition and NOx generation of high-alkali coal under the condition of staged oxy-fuel combustion [J]. Journal of Xi’an Jiaotong University, 2023, 57(8): 76-85.
RAHEEM D G, YILMAZ B, KAYAHAN U, et al. Effect of recycled flue gas ratio on combustion characteristics of lignite oxy-combustion in a circulating fluidized bed [J]. Energy & Fuels, 2020, 34(11): 14786-14795.
LI S Y, LI H Y, LI W, et al. Coal combustion emission and ash formation characteristics at high oxygen concentration in a 1 MWth pilot-scale oxy-fuel circulating fluidized bed [J]. Applied Energy, 2017, 197: 203-211.
ENGIN B, KAYAHAN U, ATAKÜL H. A comparative study on the air, the oxygen-enriched air and the oxyfuel combustion of lignites in CFB [J]. Energy, 2020, 196: 117021.
李伟. 循环流化床富氧燃烧SO2生成和脱除特性研究[D]. 北京: 中国科学院研究生院(工程热物理研究所), 2015.
LI W. Study on SO2 emission and removal characteristics for oxy-fuel circulating fluidized bed combustion [D]. Beijing: Graduate University of Chinese Academy of Sciences (Institute of Engineering Thermophysics), 2015.
朱书骏. 煤/半焦富氧预热燃烧特性及NOx排放特性试验研究[D]. 北京: 中国科学院大学(中国科学院工程热物理研究所), 2019.
ZHU S J. Experimental study on coal/semi-coke oxygen-rich preheating combustion characteristics and NOx emission characteristics [D]. Beijing: University of Chinese Academy of Sciences (Institute of Engineering Thermophysics, Chinese Academy of Sciences), 2019.
毛志慧. MILD-Oxy燃烧的数值模拟与0.3 MWth试验研究[D]. 武汉: 华中科技大学, 2017.
MAO Z H. Numerical simulation and 0.3 MWth experimental study of MILD-Oxy combustion [D]. Wuhan: Huazhong University of Science and Technology, 2017.
PERRONE D , CASTIGLIONE T , KLIMANEK A, et al. Numerical simulations on oxy-MILD combustion of pulverized coal in an industrial boiler [J]. Fuel Processing Technology, 2018, 181: 361-374.
ZHU S J, LYU Q G, ZHU J G, et al. Low NOx emissions from pulverized coal moderate or intense low-oxygen dilution combustion in O2/CO2 preheated by a circulating fluidized bed [J]. Energy & Fuels, 2018, 32(10): 10956-10963.
ZHU S J, LYU Q G, ZHU J G, et al. NO emissions under pulverized char MILD combustion in O2/CO2 preheated by a circulating fluidized bed: Effect of oxygen-staging gas distribution [J]. Fuel Processing Technology, 2018, 182: 104-112.
ZHANG Z W, LI X S, ZHANG L Q, et al. Effect of H2O/CO2 mixture on heat transfercharacteristics of pulverized coal MILD-oxy combustion [J]. Fuel Processing Technology, 2019, 184: 27-35.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构