浏览全部资源
扫码关注微信
1.太原理工大学 化学工程与技术学院,山西 太原 030024
2.煤炭科学技术研究院有限公司 煤化工分院,北京 100013
3.中煤科工开采研究院有限公司 煤炭资源高效开采与洁净利用国家重点实验室,北京 100013
张学勤(1997—),硕士研究生,研究方向为气体吸附,E-mail:2826948810@qq.com。
杨江峰(1982—),博士,教授,研究方向为气体吸附与分离, E-mail:yangjiangfeng@tyut.edu.cn。
纸质出版日期:2024-11-25,
收稿日期:2024-01-02,
修回日期:2024-02-06,
移动端阅览
张学勤,白洪灏,唐轩等.不同硅铝比Beta分子筛水蒸气动态吸附性能研究[J].低碳化学与化工,2024,49(11):90-96.
ZHANG Xueqin,BAI Honghao,TANG Xuan,et al.Study on water vapor dynamic adsorption performances of Beta-molecular sieves with different silica to aluminum ratios[J].Low-carbon Chemistry and Chemical Engineering,2024,49(11):90-96.
张学勤,白洪灏,唐轩等.不同硅铝比Beta分子筛水蒸气动态吸附性能研究[J].低碳化学与化工,2024,49(11):90-96. DOI: 10.12434/j.issn.2097-2547.20240004.
ZHANG Xueqin,BAI Honghao,TANG Xuan,et al.Study on water vapor dynamic adsorption performances of Beta-molecular sieves with different silica to aluminum ratios[J].Low-carbon Chemistry and Chemical Engineering,2024,49(11):90-96. DOI: 10.12434/j.issn.2097-2547.20240004.
硅铝沸石分子筛在吸附领域应用广泛,其亲、疏水性能对吸附性能影响较
大,但硅铝沸石分子筛在不同条件下的水蒸气动态吸附性能尚不明确。采用不同硅铝比(
n
(SiO
2
)/
n
(Al
2
O
3
) = 30、135或679)的Beta分子筛(Beta-30、Beta-135 和Beta-679)作为研究对象,先采用XRD、FT-IR和TG等对其进行了表征,然后在不同温度和相对湿度(
H
R
)下分别进行了Beta-30、Beta-135和Beta-679的水蒸气吸附容量和相应动力学分析。结果表明,当温度为25 ℃或35 ℃、
H
R
小于80%时,Beta-679的吸附容量最低。当温度为15 ℃、
H
R
为5%~10%时,Beta-679的平衡速率最快。当温度为15 ℃、
H
R
为50%~70%时,Beta-30、Beta-135和Beta-679的平衡速率表现出较大区别(Beta-135的平衡速率远小于Beta-30和Beta-679的平衡速率)。
Silica-aluminum zeolite molecular sieve is widely used in adsorption field
and its hydrophilic and hydrophobic properties have great influence on adsorption properties. Howerer
the dynamic adsorption properties of water vapor in silica-aluminum zeolite molecular sieve under different conditions are still unclear. Beta molecular sieves (Beta-30
Beta-135 and Beta-679) with different silicon to aluminum ratios (
n
(SiO
2
)/
n
(Al
2
O
3
) = 30
135 or 679) were used as research objects
and were characterized by XRD
FT-IR and TG
etc. Then the water vapor adsorption capacities and corresponding kinetics of Beta-30
Beta-135 and Beta-679 were analyzed under different temperatures and relative humidities (
H
R
)
respectively. The results show that Beta-679 has the lowest adsorption capacity when temperature is 25 ℃ or 35 ℃ and
H
R
is less than 80%. The equilibrium rate of Beta-679 is the fastest when temperature is 15 ℃ and
H
R
is 5% to 10%. When temperature is 15 ℃ and
H
R
is 50% to 70%
the equilibrium rates of Beta-30
Beta-135 and Beta-679 show great difference (the equilibrium rate of Beta-135 is much smaller than that of Beta-30 and Beta-679).
Beta分子筛硅铝比水蒸气吸附动力学
Beta molecular sievessilicon to aluminum ratioswater vapor adsorptiondynamics
郭武杰, 李媛, 李世帅, 等. 高硅沸石分子筛ZSM-11用于CH4/N2吸附分离性能的研究[J]. 天然气化工—C1 化学与化工, 2022, 47(1): 68-72.
GUO W J, LI Y, LI S S, et al. Study on adsorption and separation performance of CH4/N2 by high-silica ZSM-11 zeolite [J]. Natural Gas Chemical Industry, 2022, 47(1): 68-72.
高杭, 杜艳泽, 秦波, 等. 一种高硅铝比Y型分子筛及其制备方法和应用: 112717979 A [P]. 2021-04-30.
GANG H, DU Y Z, QIN B, et al. A kind of Y-type molecular sieve with high silica-aluminum ratio and its preparation method and application: 112717979 A [P]. 2021-04-30.
SHULTZ-SIBBEL G M W, GJERDE D T, CHRISWELL C D, et al. Analytical investigation of the properties and uses of a new hydrophobic molecular sieve [J]. Talanta, 1982, 29: 447-452.
FAN X J, ZHANG B Q, SU Z Y, et al. Preparation, surface acidity and catalytic performance of Beta/ZSM-5 composite molecular sieve [J]. Chemical Physics, 2022, 558: 11512.
YUE B, LIU S S, CHAI Y C, et al. Zeolites for separation: Fundamental and application [J]. Journal of Energy Chemistry, 2022, 71: 288-303.
LIU L Y, DU T, FANG X, et al. Preparation of hydrophobic zeolite 13X@SiO2 and their adsorption properties of CO2 and H2O [J]. Advanced Materials Research, 2014, 1053: 311-316.
LIN J Y S. Molecular sieves for gas separation [J]. Science, 2016, 353(6295): 121-122.
KO D. Comparison of carbon molecular sieve and zeolite 5A for CO2 sequestration from CH4/CO2 mixture gas using vacuum pressure swing adsorption [J]. Korean Journal of Chemical Engineering, 2021, 38(5): 1043-1051.
HE Y X, LIU L, PAN Q W, et al. Performance characterization and comparison study of silver molecular sieve hydrogen adsorbents in liquid hydrogen vessels [J]. Vacuum, 2024, 221: 112917.
SUN N, ZHANG Q P, YAO Y, et al. Improved hydrogen adsorption of 5A molecular sieves by enhancing its thermal conductivity [J]. Applied Physics Letters, 2018, 113: 103901.
CANEVESI R L S, ANDREASSEN K A, SILVAET E A D, et al. Pressure swing adsorption for biogas upgrading with carbon molecular sieve [J]. Industrial & Engineering Chemistry Research, 2018, 57(23): 8057-8067.
尚华, 白洪灏, 刘佳奇, 等. CH4/N2在自支撑颗粒型Silicalite-1上的吸附分离及PSA模拟[J]. 化工学报, 2020, 71(5): 2088-2098.
SHANG H, BAI H H, LIU J Q, et al. PSA simulation and adsorption separation of CH4-N2 by self-supporting pellets Silicalite-1 [J]. CIESC Journal, 2020, 71(5): 2088-2098.
杨江峰, 赵强, 于秋红, 等. 煤层气回收及CH4/N2分离PSA材料的研究进展[J]. 化工进展, 2011, 30(4): 793-801.
YANG J F, ZHAO Q, YU Q H, et al. Progress of recovery of coal bed methane and adsorption materials for separation of CH4/N2 by pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2011, 30(4): 793-801.
GONG Y T, CHEN C, LIVELY R P, et al. [J]. Industrial & Engineering Chemistry Research, 2021, 60(27): 9940-9947.
CUI J Y, ZHANG Z Q, YANG L F, et al. A molecular sieve with ultrafast adsorption kinetics for propylene separation [J]. Science, 2023, 383(6679): 179-183.
吕双春. 分子筛结构调控与疏水改性及其对挥发性有机物吸附研究[D]. 天津: 天津大学, 2021.
LV S C. Pore structure control and hydrophobic modification of zeolites and their adsorption performance for volatile organic compounds [D]. Tianjin: Tianjin University, 2021.
SHEN X Q, DU X S, YANG D F, et al. Influence of physical structures and chemical modification on VOCs adsorption characteristics of molecular sieves [J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106729.
汪莹莹, 王鹏飞, 徐华胜, 等. 一种高硅NaY分子筛及其制备方法和应用: 110862096 A [P]. 2020-03-06.
WANG Y Y, WANG P F, XU H S, et al. A high silica NaY molecular sieve and its preparation method and application: 110862096 A [P]. 2020-03-06.
SHANG H, ZHANG F F, LIU J Q, et al. Enriching low-concentration coalbed methane using a hydrophobic adsorbent under humid conditions [J]. Industrial & Engineering Chemistry Research, 2021, 60(34): 12689-12697.
YONLI A H, GENER I, MIGNARD S. Comparative study of the hydrophobicity of BEA, HZSM-5 and HY zeolites determined by competitive adsorption [J]. Microporous and Mesoporous Materials, 2010, 132: 37-42.
FAWAZ E G, SALAM D A, DAOU T J. Esterification of linoleic acid using HZSM-5 zeolites with different Si/Al ratios [J]. Microporous and Mesoporous Materials, 2020, 294: 109855.
常云峰, 黄小东. 晶种法合成高硅铝比菱沸石型分子筛的方法及分子筛的应用: 164163434 A [P]. 2014-11.26.
CHANG Y F, HUANG X D. Synthesis of zeolite-type molecular sieves with high silica-to-aluminum ratio by the crystal seed method and application of molecular sieves: 164163434 A [P]. 2014-11-26.
WANG C, GUO H D, LENG S Z, et al. Regulation of hydrophilicity/hydrophobicity of aluminosilicate zeolites: A review [J]. Solid State and Materials Sciences, 2020, 46(4): 330-348.
YAO H, KE H, ZHANG X B, et al. Molecular recognition of hydrophilic molecules in water by combining the hydrophobic effect with hydrogen bonding [J]. Journal of the American Chemical Society, 2018, 140(41): 13466-13477.
CRÉMOUX T, BATONNEAU-GENER I, MOISSETTE A, et al. Influence of framework Si/Al ratio and topology on electron transfers in zeolites [J]. Physical Chemistry Chemical Physics, 2019, 21(27): 14892-14903.
MINTOVA S , VALTCHEV V, ONFROY T, et al. Variation of the Si/Al ratio in nanosized zeolite Beta crystals [J]. Microporous and Mesoporous Materials, 2006, 90(1/3): 237-245.
URASHIMA S H, UCHIDA T, YUI H. A hydrogen-bonding structure in self-formed nanodroplets of water adsorbed on amorphous silica revealed via surface-selective vibrational spectroscopy [J]. Physical Chemistry Chemical Physics, 2020, 22(46): 27031-27036.
LEDESMA-DURAN A, HERNANDEZ S I, SANTAMARIA-HOLEK I. Effect of surface diffusion on adsorption-desorption and catalytic kinetics in irregular pores. I. Local kinetics [J]. The Journal of Physical Chemistry C, 2017, 121(27): 14544-14556.
BRANCATO V, GORDEEVA L, SAPIENZA A, et al. Dynamics study of ethanol adsorption on microporous activated carbon for adsorptive cooling applications [J]. Applied Thermal Engineering, 2016, 105: 28-38.
BROUERS F, Al-MUSAWI T J. Brouers-Sotolongo Fractal kinetics versus fractional derivative kinetics: A new strategy to analyze the pollutants sorption kinetics in porous materials [J]. Journal of Hazardous Materials, 2018, 350: 162-168.
LARGITTEA L, PASQUIER R. New models for kinetics and equilibrium homogeneous adsorption [J]. Chemical Engineering Research and Design, 2016, 112: 289-297.
PAPATZACOS P. Dynamics of monolayer physisorption in homogeneous mesoporous media [J]. ACS Omega, 2020, 5: 430-447.
RAHMANI A M, WANG A, MANOHARAN V N, et al. Colloidal particle adsorption at liquid interfaces: Capillary driven dynamics and thermally activated kinetics [J]. Soft Matter Journal, 2016, 12(30): 6365-6372.
WANG J L, GUO X. Adsorption kinetic models: Physical meanings, applications, and solving methods [J]. Journal of Hazardous Materials, 2020, 390: 122156.
ZANDAVI S H, WARD C A. Vapour adsorption kinetics: Statistical rate theory and zeta adsorption isotherm approach [J]. Physical Chemistry Chemical Physics, 2016, 18(36): 25538-25545.
CHENG Z L, LI Y X, LIU Z. Study on adsorption of rhodamine B onto Beta zeolites by tuning SiO2/Al2O3 ratio [J]. Ecotoxicology and Environmental Safety, 2018, 148: 585-592.
CHANAJAREE R, BOPP PH A, FRITZSCHE S, et al. Water dynamics in chabazite [J]. Microporous and Mesoporous Materials, 2011, 146(1/2/3): 106-118.
DIAZ-MARIN C D, ZHANG L N, LU Z M, et al. Kinetics of sorption in hygroscopic hydrogels [J]. Nano Letters, 2022, 22(3): 1100-1107.
DIETZE E M, GRONBECK H. Ensemble effects in adsorbate-adsorbate interactions in microkinetic modeling [J]. Journal of Chemical Theory and Computation, 2023, 19(3): 1044-1049.
GUO X, WANG J L. A general kinetic model for adsorption: Theoretical analysis and modeling [J]. Journal of Molecular Liquids, 2019, 288: 111100.
KUKUCKA M, KUKUCKA N, KUKUCKA A. A novel approach to adsorption kinetics calculation [J]. Microporous and Mesoporous Materials, 2016, 228: 123-131.
QUEIROZ V, ALMEIDA D S D, MIGLIORANZA G H D O, et al. Analysis of commonly used batch adsorption kinetic models derived from mass transfer-based modelling [J]. Environmental Science and Pollution Research, 2022, 29(53): 79875-79889.
MARBAN G. BET adsorption reaction model based on the pseudo steady-state hypothesis for describing the kinetics of adsorption in liquid phase [J]. Journal of Colloid and Interface Science, 2016, 467: 170-179.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构