浏览全部资源
扫码关注微信
常州大学 石油工程学院 江苏省油气储运技术省重点实验室,江苏 常州 213164
杨帆(1997—),硕士研究生,研究方向为气体水合物抑制,E-mail:1298841204@qq.com。
周诗岽(1978—),博士,教授,博士研究生导师,研究方向为油气管输技术和气体水合物利用,E-mail:zsd@cczu.edu.cn。
纸质出版日期:2024-10-25,
收稿日期:2023-12-25,
修回日期:2024-02-04,
移动端阅览
杨帆,周诗岽,肖雁云等.甘氨酸及其与PVP K90复合抑制剂对二氧化碳水合物生成的影响[J].低碳化学与化工,2024,49(10):129-135.
YANG Fan,ZHOU Shidong,XIAO Yanyun,et al.Effects of glycine and its composite inhibitor with PVP K90 on formation of carbon dioxide hydrate[J].Low-carbon Chemistry and Chemical Engineering,2024,49(10):129-135.
杨帆,周诗岽,肖雁云等.甘氨酸及其与PVP K90复合抑制剂对二氧化碳水合物生成的影响[J].低碳化学与化工,2024,49(10):129-135. DOI: 10.12434/j.issn.2097-2547.20230423.
YANG Fan,ZHOU Shidong,XIAO Yanyun,et al.Effects of glycine and its composite inhibitor with PVP K90 on formation of carbon dioxide hydrate[J].Low-carbon Chemistry and Chemical Engineering,2024,49(10):129-135. DOI: 10.12434/j.issn.2097-2547.20230423.
大规模碳捕集需要通过管道输送二氧化碳(CO
2
),CO
2
水合物的生成会影响管道输送安全。甘氨酸对水分子具有较强的扰动作用,可以抑制CO
2
水合物的生成。以高压可视化反应釜为实验平台,在温度为275.15 K、压力为3.5 MPa和搅拌速率为700 r/min的条件下,开展了甘氨酸单一体系及其与聚乙烯吡咯烷酮(PVP K90)复配体系中的CO
2
水合物生成实验。结果表明,单一体系中甘氨酸浓度(质量分数)为4.0%时抑制效果最佳,诱导时间比为纯水体系增加了439.02%。水合物生成的温度骤升最高点随着甘氨酸浓度的增加呈现先降后升的趋势。甘氨酸与PVP K90复配能显著延长水合物诱导时间,降低温度骤升最高点。其中,4.0%甘氨酸+ 0.7% PVP K90复配抑制效果最佳,相较于4.0%甘氨酸单一体系,诱导时间延长了105.43%,温度骤升最高点下降了0.15%。本研究可为水合物抑制剂的研发提供参考。
Large-scale carbon capture requires the transportation of carbon dioxide (CO
2
) through pipelines. The formation o
f CO
2
hydrate can affect the safety of pipeline transportation. Glycine has a strong disturbing effect on water molecules and can inhibit the formation of CO
2
hydrate. Using a high-pressure visual reaction kettle as the experimental platform
the formation of CO
2
hydrate was studied in single glycine systems and their composite systems with polyvinylpyrrolidone (PVP K90) under the conditions of temperature 275.15 K
pressure 3.5 MPa and stirring speed 700 r/min. The results show that the inhibition effect is best in the single system when the glycine concentration (mass fraction) is 4.0%
and the induction time is 439.02% of that of the pure water system. The highest point of the temperature rise during hydrate formation shows a trend of first decreasing and then increasing with the increase of glycine concentration. The compounding of glycine and PVP K90 can significantly prolong the induction time of hydrate formation and lower the highest point of temperature rise. Among them
the inhibition effect of the compounding 4.0% glycine and 0.7% PVP K90 is the best. Compared with the single system of 4.0% glycine
the induction time is extended by 105.43% and the highest point of temperature rise is lowered by 0.15%. This study can provide a reference for the development of hydrate inhibitors.
动力学抑制剂聚乙烯吡咯烷酮甘氨酸二氧化碳水合物
kinetic inhibitorpolyvinylpyrrolidoneglycinecarbon dioxidehydrate
SA J H, KWAK G H, HAN K, et al. Inhibition of methane and natural gas hydrate formation by altering the structure of water with amino acids [J]. Scientific Reports, 2016, 6(1): 31582.
WANG R, LI R, ZHANG L, et al. Kinetic mechanism of hydrophilic amino acid inhibiting the formation of tetrahydrofuran (THF) hydrate [J]. Natural Gas Industry B, 2020, 7(2): 184-189.
ZHAO X, QIU Z S, HUANG W A, et al. Mechanism and method for controlling low-temperature rheology of water-based drilling fluids in deepwater drilling [J]. Journal of Petroleum Science and Engineering, 2017, 154: 405-416.
BAVOH C B, PARTOON B, LAL B, et al. Methane hydrate-liquid-vapour-equilibrium phase condition measurements in the presence of natural amino acids [J]. Journal of Natural Gas Science and Engineering, 2017, 37: 425-434.
BAVOH C B, PARTOON B, LAL B, et al. Inhibition effect of amino acids on carbon dioxide hydrate [J]. Chemical Engineering Science, 2017, 171: 331-339.
O'REILLY R, IEONG N S, CHUA P C, et al. Crystal growth inhibition of tetrahydrofuran hydrate with poly(N-vinyl piperidone) and other poly(N-vinyl lactam) homopolymers [J]. Chemical Engineering Science, 2011, 66(24): 6555-6560.
WANG R, SUN H C, SUN J S, et al. Effect of dissolution and dispersion conditions of VC-713 on the hydrate inhibition [J]. Journal of Chemistry, 2019, 2019: 3547518.
URDAHL O, LUND A, MØRK P, et al. Inhibition of gas hydrate formation by means of chemical additives—I. Development of an experimental set-up for characterization of gas hydrate inhibitor efficiency with respect to flow properties and deposition [J]. Chemical Engineering Science, 1995, 50(5): 863-870.
KUZNETSOVA T, SAPRONOVA A, KVAMME B, et al. Impact of low-dosage inhibitors on clathrate hydrate stability [J]. Macromolecular Symposia, 2010, 287: 168-176.
ZHANG L, SUN H C, HAN B, et al. Effect of shearing actions on the rheological properties and mesostructures of CMC, PVP and CMC + PVP aqueous solutions as simple water-based drilling fluids for gas hydrate drilling [J]. Journal of Unconventional Oil and Gas Resources, 2016, 14: 86-98.
WANG R, SUN H C, SHI X M, et al. Fundamental investigation of the effects of modified starch, carboxymethylcellulose sodium, and xanthan gum on hydrate formation under different driving forces [J]. Energies, 2019, 12(10): 2026.
ZHAO X, QIU Z, JIANG L, et al. An experimental analysis of natural gas hydrate formation at the presence of kinetic hydrate inhibitors [J]. Natural Gas Industry, 2014, 34: 105-110.
HECHT D, TADESSE L, WALTERS L. Correlating hydration shell structure with amino acid hydrophobicity [J]. Journal of the American Chemical Society, 1993, 115(8): 3336-3337.
SA J H, KWAK G H, LEE B R, et al. Hydrophobic amino acids as a new class of kinetic inhibitors for gas hydrate formation [J]. Scientific Reports, 2013, 3(1): 2428.
SA J H, KWAK G H, HAN K, et al. Gas hydrate inhibition by perturbation of liquid water structure [J]. Scientific Reports, 2015, 5(1): 11526.
PERFELDT C M, CHUA P C, DARABOINA N, et al. Inhibition of gas hydrate nucleation and growth: Efficacy of an antifreeze protein from the longhorn beetle rhagium mordax [J]. Energy & Fuels, 2014, 28: 3666-3672.
PRASAD P S R, KIRAN B S. Are the amino acids thermodynamic inhibitors or kinetic promoters for carbon dioxide hydrates? [J]. Journal of Natural Gas Science and Engineering, 2018, 52: 461-466.
WANG J L, SUN J S, WANG R, et al. Mechanisms of synergistic inhibition of hydrophilic amino acids with kinetic inhibitors on hydrate formation [J]. Fuel, 2022, 321: 124012.
ROOSTA H, DASHTI A, MAZLOUMI S H, et al. The dual effect of amino acids on the nucleation and growth rate of gas hydrate in ethane + water, methane + propane + water and methane + THF + water systems [J]. Fuel, 2018, 212: 151-161.
周厚安, 汪波, 金洪, 等. 川渝气田天然气水合物防治技术研究与应用进展[J]. 石油与天然气化工, 2012, 41(3): 300-303+359.
ZHOU H A, WANG B, JIN H, et al. Natural gas hydrate prevention technology and its application progress in Sichuan and Chongqing gas field [J]. Chemical Engineering of Oil & Gas, 2012, 41(3): 300-203+359.
BAVOH C B, LAL B, OSEI H, et al. A review on the role of amino acids in gas hydrate inhibition, CO2 capture and sequestration, and natural gas storage [J]. Journal of Natural Gas Science and Engineering, 2019, 64: 52-71.
NASIR Q, SULEMAN H, ELSHEIKH Y A. A review on the role and impact of various additives as promoters/inhibitors for gas hydrate formation [J]. Journal of Natural Gas Science and Engineering, 2020, 76: 103211.
SA J H, LEE B R, PARK D H, et al. Amino acids as natural inhibitors for hydrate formation in CO2 sequestration [J]. Environmental Science & Technology, 2011, 45(13): 5885-5891.
LONGINOS S N, PARLAKTUNA M. Kinetic study of the effect of amino acids on methane (95%)-propane (5%) hydrate formation [J]. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133(2): 753-763.
李涛, 孙锐艳. 低渗透油田常温集输及低温脱水技术研究与应用[J]. 石油规划设计, 2013, 24(1): 28-33+59.
LI T, SUN R Y. Oil gathering and transfer at atmospheric temperature and low temperature dehydration technology in the low permeability oilfield [J]. Petroleum Planning & Engineering, 2013, 24(1): 28-33+59.
ZHAO X, QIU Z S, ZHANG Z, et al. Relationship between the gas hydrate suppression temperature and water activity in the presence of thermodynamic hydrate inhibitor [J]. Fuel, 2020, 264: 116776.
BHATTACHARJEE G, CHOUDHARY N, KUMAR A, et al. Effect of the amino acid L-histidine on methane hydrate growth kinetics [J]. Journal of Natural Gas Science and Engineering, 2016, 35: 1453-1462.
SUN H C, WANG Y R, XU X G, et al. Effect of hydrophilic nano-SiO2 on CH4 hydrate formation [J]. Journal of China University of Petroleum (Edition of Natural Science), 2018, 42: 81-87.
KHODAVERDILOO K R, RAD S A, NAEIJI P, et al. Synergistic effects of nonylphenol ethoxylates and polyethylene glycols on performance of gas hydrate kinetic inhibitor [J]. Journal of Molecular Liquids, 2016, 216: 268-274.
JOKANDAN E F, NAEIJI P, VARAMINIAN F. The synergism of the binary and ternary solutions of polyethylene glycol, polyacrylamide and hydroxyethyl cellulose to methane hydrate kinetic inhibitor [J]. Journal of Natural Gas Science and Engineering, 2016, 29: 15-20.
WANG J L, SUN J H, WANG R, et al. Mechanisms of synergistic inhibition of hydrophilic amino acids with kinetic inhibitors on hydrate formation [J]. Fuel, 2022, 321: 124012.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构