浏览全部资源
扫码关注微信
1.华东理工大学 化工学院 上海 200237
2.华东理工大学 化工学院 大型工业反应器工程教育部工程研究中心 上海 200237
郑泽宇(1997—),硕士研究生,研究方向为二氧化碳利用工艺开发,E-mail:zyzheng_2052@163.com。
崔灵瑞(1992—),博士,助理研究员,研究方向为重质油加工与二氧化碳利用,E-mail:cuilr@ecust.edu.cn。
纸质出版日期:2024-10-25,
收稿日期:2023-12-20,
修回日期:2024-01-31,
移动端阅览
郑泽宇,崔灵瑞,刘操等.基于热力学计算的CO2催化加氢制二甲醚流程分析[J].低碳化学与化工,2024,49(10):103-109.
ZHENG Zeyu,CUI Lingrui,LIU Cao,et al.Process analysis of catalytic hydrogenation of CO2 to dimethyl ether based on thermodynamic calculation[J].Low-carbon Chemistry and Chemical Engineering,2024,49(10):103-109.
郑泽宇,崔灵瑞,刘操等.基于热力学计算的CO2催化加氢制二甲醚流程分析[J].低碳化学与化工,2024,49(10):103-109. DOI: 10.12434/j.issn.2097-2547.20230417.
ZHENG Zeyu,CUI Lingrui,LIU Cao,et al.Process analysis of catalytic hydrogenation of CO2 to dimethyl ether based on thermodynamic calculation[J].Low-carbon Chemistry and Chemical Engineering,2024,49(10):103-109. DOI: 10.12434/j.issn.2097-2547.20230417.
二甲醚是一种理想的发动机清洁燃料,在碳中和背景下,国内外积极开展了以二氧化碳(CO
2
)为原料制备二甲醚的研究。CO
2
催化加氢制二甲醚的方法主要包括一步法和两步法,对基于不同方法的工艺流程展开热力学分析,可为工艺流程优化和相关催化剂开发提供参考。基于一步法构建了流程一,基于两步法分别构建了流程二(以甲醇为中间体)和流程三(以CO为中间体),在原料气组成为
n
(H
2
):
n
(CO
2
) = 3:1的条件下,对反应温度(150~350 ℃)与反应压力(1.0~9.0 MPa)对各流程中相应的平衡常数、CO
2
平衡转化率和二甲醚收率的影响进行了研究。结果表明,在150 ℃、9.0 MPa下,与其他两种流程相比,流程一更具优势,其CO
2
平衡转化率为94.61%,二甲醚收率为85.31%。对于以CO为中间体的两步法工艺,未来需加强高效逆水煤气低温催化剂的开发。对于一步法工艺,将反应体系与分离体系进行耦合的复合体系是未来主要的研究方向。
Dimethyl ether is an ideal engine clean fuel. Under the background of carbon neutrality
the preparation of dimethyl ether from CO
2
has been actively carried out at home and abroad. The methods of catalytic hydrogenation of CO
2
to dimethyl ether mainly include one-step and two-step method. The thermodynamic analysis of the processes based on different methods can provide reference for process optimization and related catalyst development. Process one was constructed based on the one-step method
and process two (with methanol as the intermediate) and process three (with CO as the intermediate) were respectively constructed based on the two-step method. Under the condition that the composition of raw gas is
n
(H
2
):
n
(CO
2
) = 3:1
the effects of reaction temperatures (from 150 ℃ to 350 ℃) and reaction pressures (from 1.0 MPa to 9.0 MPa) on the corresponding equilibrium constants
CO
2
equilibrium conversion rates and dimethyl ether yields in each process were studied. The results show that at 150 ℃ and 9.0 MPa
the process one is superior to the other two processes
with CO
2
equilibrium conversion rate of 94.61% and dimethyl ether yield of 85.31%. For the two-step method process with CO as the intermediate
the development of high efficiency reverse water gas low temperature catalyst should be strengthened in the future. For the one-step
method process
the composite system coupling reaction system and separation system is the main research direction in the future.
二氧化碳催化加氢二甲醚流程分析热力学计算
carbon dioxidecatalytic hydrogenationdimethyletherprocess analysisthermodynamic calculation
刘畅, 刘忠文. CO2加氢一步制二甲醚展望[J]. 化工进展, 2022, 41(3): 1115-1120.
LIU C, LIU Z W. Perspective on the one-step CO2 hydrogenation to dimethyl ether [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1115-1120.
VAN KAMPEN J, BOON J, VAN SINT ANNALAND M, et al. Separation enhanced methanol and dimethyl ether synthesis [J]. Journal of Materials Chemistry A, 2021, 9(26): 141627-14629.
冯文华. GaZrOx双金属氧化物催化CO2加氢制甲醇和二甲醚的协同机理研究[D]. 兰州: 兰州大学, 2021.
FENG W H. Insights into bimetallic oxide synergy during CO2 hydrogenation to methanol and dimethyl ether over GaZrOx oxide catalysts [D]. Lanzhou: Lanzhou University, 2021.
ATEKA A, RODRIGUEZ V P, CORDERO-LANZAC T, et al. Model validation of a packed bed LTA membrane reactor for the direct synthesis of DME from CO/CO2 [J]. Chemical Engineering Journal, 2021, 408: 127356.
陈舒瑶. 改性CuZnZr催化剂CO2加氢高选择性合成甲醇/二甲醚的研究[D]. 合肥: 中国科学院大学, 2020.
CHEN S Y. Study on the highly selective synthesis of methanol/dimethyl ether by CO2 hydrogenation of modified CuZnZr catalyst [D]. Hefei: University of Chinese Academy of Sciences, 2020.
秦霏, 颜万鑫, 纳薇, 等. 活性形貌对CuO/ZnO/Al2O3催化加氢反应的影响[J]. 精细化工, 2019, 36(5): 905-912.
QIN F, YAN W X, NA W, et al. Effect of active morphology on catalytic hydrogenation of CuO/ZnO/Al2O3 [J]. Fine Chemicals, 2019, 36(5): 905-912.
薛茹君, 朱峰. Zr掺杂Cu-Mn-Al/HZSM-5催化剂上CO2加氢一步制取二甲醚[J]. 天然气化工—C1化学与化工, 2018, 43(6): 53-57.
XUE R J, ZHU F. Zr-doped Cu-Mn-Al/HZSM-5 catalyst for direct synthesis of DME from CO2 hydrogenation [J]. Natural Gas Chemical Industry, 2018, 43(6): 53-57.
FAN X, JIN B T, REN S J, et al. Roles of interaction between components in CZZA/HZSM-5 catalyst for dimethyl ether synthesis via CO2 hydrogenation [J]. AIChE Journal, 2021, 67(11): 17353.
郭永乐. 新型铜基核壳双功能催化剂制备及COx加氢直接制二甲醚研究[D]. 大连: 大连理工大学, 2021.
GUO Y L. Studies in preparation of Cu-based core-shell bifunctional catalysts and their catalytic properties for direct synthesis of dimethyl ether through COx hydrogenation [D]. Dalian: Dalian University of Technology, 2021.
GRAAF G H, SIJTSEMA P J J M, STAMHUIS E J, et al. Chemical equilibria in methanol synthesis [J]. Chemical Engineering Science, 1986, 41(11): 2883-2890.
BENNEKOM J G V, WINKELMAN J G M, VENDERBOSCH R H, et al. Modeling and experimental studies on phase and chemical equilibria in high-pressure methanol synthesis [J]. Industrial & Engineering Chemistry Research, 2012, 51(38): 12233-12243.
BANSODE A, URAKAWA A. Towards full one-pass conversion of carbon dioxide to methanol and methanol-derived products [J]. Journal of Catalysis, 2014, 309: 66-70.
GAILWAD R, BANSODE A, URAKAWA A. High-pressure advantages in stoichiometric hydrogenation of carbon dioxide to methanol [J]. Journal of Catalysis, 2016, 343: 127-132.
LI H Z, REN S J, ZHANG S X, et al. The high-yield direct synthesis of dimethyl ether from CO2 and H2 in a dry reaction environment [J]. Journal of Materials Chemistry A, 2021, 9(5): 2678-2682.
LI H Z, QIU C L, REN S J, et al. Na+-gated water-conducting nanochannels for boosting CO2 conversion to liquid fuels [J]. Science, 2020, 367(6478): 667-671.
YUE W Z, WAN Z, Li Y H, et al. Synthesis of Cu-ZnO-Pt@HZSM-5 catalytic membrane reactor for CO2 hydrogenation to dimethyl ether [J]. Journal of Membrane Science, 2022, 660.
YUE W Z, LI Y H, WEI W, et al. Highly selective CO2 conversion to methanol in abifunctional zeolite catalytic membrane reactor [J]. Angewandte Chemie-Internationa Edition, 2021, 60(33): 18289-18294.
CHEN C J, SUN X F, YAN X P, et al. Boosting CO2 electroreduction on N,P-co doped carbon aerogels [J]. Angewandte Chemie-International Edition, 2020, 59(27): 11123-11129.
MA J P, XIONG X, WU D, et al. Band position-independent piezo-electrocatalysis for ultrahigh CO2 conversion [J]. Advanced Materials, 2023, 35(21): 2300027.
POLSHETTIWAR V, BELGAMWAR R, VERMA R, et al. Defects tune the strong metal-support interactions in copper supported on defected titanium dioxide catalysts for CO2 reduction [J]. Journal of the American Chemical Society, 2023, 145 (15): 8634-8646.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构