浏览全部资源
扫码关注微信
1.西南化工研究设计院有限公司 工业排放气综合利用国家重点实验室,国家碳一化学工程技术研究中心,四川 成都 610225
2.四川大学 化学学院,四川 成都 610064
张俊杰(1989—),博士,高级工程师,研究方向为C1化工与多相催化,E-mail:zhangjj@swchem.com。
李珊珊(1992—),博士,实验师,研究方向为多相催化,E-mail:shanshanli@scu.edu.cn。
纸质出版日期:2024-10-25,
收稿日期:2023-12-15,
修回日期:2024-03-07,
移动端阅览
张俊杰,王大军,李珊珊等.助剂Pr6O11掺杂对CeO2-ZrO2-Al2O3材料及其负载单Pd三效催化剂性能的影响研究[J].低碳化学与化工,2024,49(10):72-80.
ZHANG Junjie,WANG Dajun,LI Shanshan,et al.Study on effects of surface modification by Pr6O11 as promoter on performances of CeO2-ZrO2-Al2O3 material and its supported Pd-only three-way catalyst[J].Low-carbon Chemistry and Chemical Engineering,2024,49(10):72-80.
张俊杰,王大军,李珊珊等.助剂Pr6O11掺杂对CeO2-ZrO2-Al2O3材料及其负载单Pd三效催化剂性能的影响研究[J].低碳化学与化工,2024,49(10):72-80. DOI: 10.12434/j.issn.2097-2547.20230411.
ZHANG Junjie,WANG Dajun,LI Shanshan,et al.Study on effects of surface modification by Pr6O11 as promoter on performances of CeO2-ZrO2-Al2O3 material and its supported Pd-only three-way catalyst[J].Low-carbon Chemistry and Chemical Engineering,2024,49(10):72-80. DOI: 10.12434/j.issn.2097-2547.20230411.
助剂表面改性是提高铈基材料热稳定性、还原性能及其负载单Pd三效催化剂低温活性的经典方法之一。揭示助剂表面改性的作用机制,对于研发高性能CeO
2
-ZrO
2
-Al
2
O
3
(CZA)材料,满足日趋严格的汽油车尾气污染物排放标准,解决尾气污染具有现实意义。基于引入助剂Pr
6
O
11
可以提升CZA的低温还原性能,进一步研究了不同Pr
6
O
11
含量(0、3%、5%、7%和9%,质量分数)对其氧化还原性能和热稳定性的影响。N
2
吸/脱附、X射线衍射(XRD)、H
2
-程序升温还原(H
2
-TPR)和储氧量等表征结果表明,Pr
6
O
11
的表面改性可在一定程度上降低CeO
2
-ZrO
2
(CZ)纳米晶的烧结驱动力,抑制CZ晶粒烧结。同时,引入Pr
6
O
11
促进材料产生了更多氧空位,从而提高了其还原性能和储氧性能。其中,Pr
6
O
11
含量为5%时,改性CZA表现出最佳的热稳定性、还原性能和储氧性能,1000 ℃下老化4 h后比表面积和孔容最大(85 m
2
/g和0.33 mL/g),CZ晶粒尺寸最小(6.9 nm),还原峰温低至532 ℃,400 ℃储氧量增至109 μmol/g。因此,该改性CZA负载的单Pd三效催化剂表现出最优的催化活性,其CO、NO、C
3
H
8
和C
3
H
6
的
t
50
(污染物转化率为50%时所需温度)较未改性催化剂分别降低了6 ℃、15 ℃、18 ℃和6 ℃。综上,在CZA材料中添加适量的Pr
6
O
11
,可有效提高其负载单Pd三效催化剂的低温活性。该方法简单经济,具有较好的应用前景。
Surface modification by promoters is one of the classic methods to improve the thermal stability
reducibility
and low-temperature activity of cerium-based materials and their supported Pd-only three-way catalysts. Revealing the mechanism of surface modification by promoters
is of practical significance for the development of high-performance CeO
2
-ZrO
2
-Al
2
O
3
(CZA) materials to meet the increasingly strict regulations on gasoline vehicle exhaust emission and to solve the exhaust pollution. On the basis of the promoting effects of Pr
6
O
11
on improving the low-temperature reducibility of CZA materials
the effects of different content of Pr
6
O
11
(0
3%
5%
7%
and 9%
mass fraction) on the redox performance and thermal stability of CZA materials were further studied. The characterization results of N
2
adsorption/desorption
X-ray diffraction (XRD)
H
2
temperature programmed reduction (H
2
-TPR) and oxygen storage capacity show that the surface modification of CZA by Pr
6
O
11
can reduce the driving force of CeO
2
-ZrO
2
(CZ) sintering and thus inhibit the growth of nanoparticles. At the same time
the introduction of Pr
6
O
11
also promotes to produce more oxygen vacancies in the material
thus improving its reducibility and oxygen storage performance. Among them
when the content of Pr
6
O
11
is 5%
the modified CZA exhibits the best thermal stability
redox performance and oxygen storage performance. After aging at 1000 ℃ for 4 h
it exhibits the highest specific surface area (85 m
2
/g) and pore volume (0.33 mL/g)
the smallest crystal size of CZ (6.9 nm)
the lowest reduction temperature (532 ℃) and the highest oxygen storage capacity of 109 μmol/g
at 400 ℃. Therefore
the modified CZA supported Pd-only three-way catalyst exhibits the optimal catalytic activity
with the
t
50
(required temperature at the pollutant conversion rate of 50%) of CO
NO
C
3
H
8
and C
3
H
6
reduced by 6 ℃
15 ℃
18 ℃ and 6 ℃
respectively
compared to the unmodified catalysts. In summary
the low-temperature activity of Pd-only the
e-way catalysts can be improved by adding an appropriate amount of Pr
6
O
11
to the CZA support
which is simple
economical
and has great application prospects.
尾气净化表面改性CeO2-ZrO2-Al2O3Pr6O11
exhaust purificationsurface modificationCeO2-ZrO2-Al2O3Pr6O11
KAKEMA T, SUEHIRO Y, MATSUZONO Y, et al. Development of Pd-only catalyst for LEV III and SULEV30 [J]. SAE Technical Paper Series, 2015, 2015-01-1003.
FAN J, CHEN Y S, JIANG X, et al. A simple and effective method to synthesize Pt/CeO2 three-way catalysts with high activity and hydrothermal stability [J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104236-104343,
KUMATANI N, SUDA A, MORIKAWA A, et al. Synthesis of a nanosized homogeneous Al2O3-CeO2-ZrO2 composite as an oxygen-storage material for highly improved thermal durability [J]. Ceramics International, 2023, 49: 19265-19272.
MORIKAWA A, SUZUKI T, KANAZAWA T, et al. A new concept in high performance ceria-zirconia oxygen storage capacity material with Al2O3 as a diffusion barrier [J]. Applied Catalysis B: Environmental, 2008, 78(3/4): 210-221.
PAPAVASILIOU A, TSETSEKOU A, MATSOUKA V, et al. Development of a Ce-Zr-La modified Pt/γ-Al2O3 TWCs’ washcoat: Effect of synthesis procedure on catalytic behaviour and thermal durability [J]. Applied Catalysis B: Environmental, 2009, 90(1/2): 162-174.
PENG N, ZHOU J F, CHEN S H, et al. Synthesis of neodymium modified CeO2-ZrO2-Al2O3 support materials and their application in Pd-only three-way catalysts [J]. Journal of Rare Earths, 2012, 30(4): 342-349.
LAN L, CHEN S H, CAO Y, et al. Promotion of CeO2-ZrO2-Al2O3 composite by selective doping with barium and its supported Pd-only three-way catalyst [J]. Journal of Molecular Catalysis A-Chemical, 2015, 410: 100-109.
ISAO C. Exhaust gas purification catalyst: US8796172B2 [P]. 2014-08-05.
HIDEO T C K S. Composite oxide, composite oxide carrier and catalyst: EP0834348A3 [P]. 1998-04-08.
SCHONEBORN M, GLOCKLER R, PAEGER A. Method for producing composites of aluminum oxide and cerium/zirconium mixed oxides: US20130023410A1 [P]. 2013-01-24.
SCHERMANZ K, SAGAR A, SCHNEBORN M, et al. Ceria zirconia alumina composition with enhanced thermal stability: US11135569B2 [P]. 2021-10-05.
KARL S, AMOD S. Ceria zirconia alumina composition with enhanced thermal stability: EP2726199B1 [P]. 2020-09-30.
KIRCHHEIM R. Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background [J]. Acta Materialia, 2007, 55(15): 5129-5138.
KIRCHHEIM R. Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation: II. Experimental evidence and consequences [J]. Acta Materialia, 2007, 55(15): 5139-5148.
ZHAO Y, WANG W, YIN X Y, et al. Engineering excellent Pd/CeO2-ZrO2-Al2O3 catalyst with abun-dant oxygen vacancies by Pr surface modification for eliminating NO and C3H8 [J]. Journal of Alloys and Compounds, 2023, 938: 168585-168595.
ZHOU Y, XIONG L, DENG J, et al. Facile synthesis of high surface area nanostructured ceria-zirconia-yttria-lanthana solid solutions with the assistance of lauric acid and dodecylamine [J]. Materials Research Bulletin, 2018, 99: 281-291.
SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) [J]. Pure and Applied Chemistry, 1985, 57(4): 603-619.
CHEN S L, HOU Y K, WANG H, et al. Enhanced thermal stability of Ce0.33Zr0.55(LaNdY)0.12O2 mixed oxides prepared by sulfate-aided coprecipitation method [J]. Journal of Rare Earths, 2021, 39(5): 587-595.
王振峰, 赵爽, 伍永福, 等. 喷雾热解法直接制备微泡中空结构铈锆固溶体的研究[J/OL]. 中国稀土学报, 1-12[2023-12-17]. http://kns.cnki.net/kcms/detail/11.2365.tg.20230221.1037.002.htmlhttp://kns.cnki.net/kcms/detail/11.2365.tg.20230221.1037.002.html.
WANG Z F, ZHAO S, WU Y F, et al. Study on direct preparation of cerium zirconium solid solution with microbubble hollow structure by spray pyrolysis [J/OL]. Journal of the Chinese Rare Earth Society, 1-12[2023-12-17]. http://kns.cnki.net/kcms/detail/11.2365.tg.20230221.1037.002.htmlhttp://kns.cnki.net/kcms/detail/11.2365.tg.20230221.1037.002.html.
WANG W, ZHAO Y, QIU J, et al. Precursor effects in preparation CeO2-ZrO2-Al2O3 materials [J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 1-9.
MAMONTOV E, BREZNY R, KORANNE M, et al. Nanoscale heterogeneities and oxygen storage capacity of Ce0.5Zr0.5O2 [J]. Journal of Physical Chemistry B, 2004, 107(47): 13007-13014.
DENG J, LI S S, XIONG L, et al. Preparation of nanostructured CeO2-ZrO2-based materials with stabilized surface area and their catalysis in soot oxidation [J]. Applied Surface Science, 2020, 505: 144301-144311.
DING Y Q, WU Q Q, GUO Y L, et al. Superior catalytic activity of a Pd catalyst in methane combustion by fine-tuning the phase of ceria-zirconia support [J]. Applied Catalysis B: Environmental, 2020, 266: 118631-118641.
MA K X, LIAO W Q, SHI W, et al. Ceria-supported Pd catalysts with different size regimes ranging from single atoms to nanoparticles for the oxidation of CO [J]. Journal of Catalysis, 2022, 407: 104-114.
DENG J, LIANG C Y, LI S S, et al. The influence of κ-Ce2Zr2O8 content on three-way catalytic performance [J]. Journal of Environmental Chemical Engineering, 2023, 11: 109894-109904.
上接第71页)
LIU X S, WU X D, WENG D, et al. Evolution of copper species on Cu/SAPO-34 SCR catalysts upon hydrothermal aging [J]. Catalysis Today, 2017, 281: 596-604.
YE D, WANG X X, LIU H, et al. Insights into the effects of sulfate species on CuO/TiO2 catalysts for NH3-SCR reactions [J]. Molecular Catalysis, 2020, 496: 111191.
GRYBO J, FEDYNA M, MOZGAWA B, et al. Mechanistic stages of the SCR reaction-Insights into the trade-off between NO reduction and NH3 oxidation over CuSSZ-13 catalysts via isotopic 15NH3 and 18O2 TPSR and steady state studies supported by IR 2D COS and and DFT modeling [J]. Applied Catalysis B: Environmental, 2023, 325(2): 122309.
朱晓. 活性炭低温NH3选择性催化还原NOx及强化机制 [D]. 济南: 山东大学, 2022.
ZHU X. Selective catalytic reduction of NOx and enhancement mechanism by NH3 at low temperture on activated carbon catalysts [D]. Jinan: Shandong university, 2022.
HAN B Y, LING L X, FAN M, et al. A DFT study and microkinetic analysis of CO oxidation to dimethyl oxalate over Pd stripe and Pd single atom-doped Cu(111) surfaces [J]. Applied Surface Science, 2019, 479(79): 1057-1067.
AN J W, WANG X H, ZHAO J X, et al. Density-functional theory study on hydrogenation of dimethyl oxalate to methyl glycolate over copper catalyst: Effect of copper valence state [J]. Molecular Catalysis, 2019, 482(6): 110667.
王智瑶, 方志刚, 曾鑫渔, 等. 基于密度泛函理论的团簇Co3MoS催化性质研究[J]. 天然气化工—C1化学与化工, 2021, 46(5): 55-61.
WANG Z Y, FANG Z G, ZENG X Y, et al. Study on catalytic properties of cluster Co3MoS based on density functional theory [J]. Natural Gas Chemical Industry, 2021, 46(5): 55-61.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构