浏览全部资源
扫码关注微信
1.重庆市农业科学院 农业工程研究所,重庆 401329
2.重庆市农业科学院 农业工程研究所 农业废弃物资源化利用技术与设备研发重庆市重点实验室,重庆 401329
3.重庆大学 化学化工学院,重庆 401331
唐宁(1983—),硕士,助理研究员,研究方向为农业废弃物资源化利用,E-mail:1945220@qq.com。
李平(1980—),博士,副研究员,研究方向为农业有机废弃物资源化利用和生态循环农业,E-mail:35606290@qq.com;
王健健(1987—),博士,研究员,研究方向为生物质多相催化与转化利用,E-mail:wangjianjian@cqu.edu.cn。
纸质出版日期:2024-11-25,
收稿日期:2023-12-14,
修回日期:2024-01-18,
移动端阅览
唐宁,杨玉鹏,刘科等.生物质及其衍生物高效转化制乳酸中多相催化剂构筑研究进展[J].低碳化学与化工,2024,49(11):50-62.
TANG Ning,YANG Yupeng,LIU Ke,et al.Research progress in construction of heterogeneous catalysts for efficient conversion of biomass and their derivatives to lactic acid[J].Low-carbon Chemistry and Chemical Engineering,2024,49(11):50-62.
唐宁,杨玉鹏,刘科等.生物质及其衍生物高效转化制乳酸中多相催化剂构筑研究进展[J].低碳化学与化工,2024,49(11):50-62. DOI: 10.12434/j.issn.2097-2547.20230408.
TANG Ning,YANG Yupeng,LIU Ke,et al.Research progress in construction of heterogeneous catalysts for efficient conversion of biomass and their derivatives to lactic acid[J].Low-carbon Chemistry and Chemical Engineering,2024,49(11):50-62. DOI: 10.12434/j.issn.2097-2547.20230408.
生物质及其衍生物选择性转化制乳酸是实现该类资源高值化利用的重要方式之一,多相催化剂在选择性转化反应中的作用至关重要。围绕生物质及其衍生物(包括甘油、木糖、果糖、葡萄糖、纤维素和原生生物质等)选择性转化制乳酸中多相催化剂的构筑进行了综述,重点讨论了不同催化剂的构效关系,分析了多相催化剂的组成、结构和活性位点对不同反应原料选择性转化制乳酸的影响,并对相关催化剂的未来研究方向进行了展望。
The selective conversion of biomass and its derivatives to lactic acid is one of the important ways to realize the high value utilization of such resources
and the role of heterogeneous catalysts in the selective conversion reaction is crucial. The construction of heterogeneous catalysts for the selective conversion of biomass and their derivatives (including glycerol
xylose
fructose
glucose
starch and cellulose and raw biomass
etc) to lactic acid was reviewed
and the structure-activity relationships of different catalysts were discussed. The influences of the compositions
structures and active sites of heterogeneous catalysts on the selective conversion of different reaction materials to lactic acid were analyzed
and the future research direction of related catalysts was prospected.
生物质乳酸多相催化催化剂构效关系
biomasslactic acidheterogeneous catalysiscatalystsstructure-activity relationships
KIM K H, KIM C S, WANG Y X, et al. Integrated process for the production of lactic acid from lignocellulosic biomass: From biomass fractionation and characterization to chemocatalytic conversion with lanthanum(III) triflate [J]. Industrial & Engineering Chemistry Research, 2020, 59(23): 10832-10839.
李陆杨, 朱林峰, 漆新华. 生物质及其衍生糖类制备乳酸的研究进展[J]. 农业资源与环境学报, 2017, 34(4): 309-318.
LI L Y, ZHU L F, QI X H. Research progress of lactic acid production from biomass and its derived carbohydrates [J]. Journal of Agricultural Resources and Environment, 2017, 34(4): 309-318.
石宁, 唐石云, 罗文艳, 等. 生物质基碳水化合物催化转化制备乳酸的研究进展[J]. 新能源进展, 2018, 6(2): 102-112.
SHI N, TANG S Y, LUO W Y, et al. Advances in catalytic conversion of biomass derived carbohydrates into lactic acid [J]. Advances in New and Renewable Energy, 2018, 6(2): 102-112.
王洪亮, 杨景雅, 梁明珠. 生物质转化制备乳酸及其酯类物质研究进展[J]. 精细化工, 2021, 38(12): 2438-2449.
WANG H L, YANG J Y, LIANG M Z. Research progress on the conversion of agricultural biomass to lactic acid and its esters [J]. Fine Chemicals, 2021, 38(12): 2438-2449.
黄越, 赵立欣, 姚宗路, 等. 木质纤维类废弃物定向生物转化乳酸、乙酸研究进展[J]. 化工进展, 2023, 42(5): 2691-2701.
HUANG Y, ZHAO L X, YAO Z L, et al. Research progress in directed bioconversion of lactic acid and acetic acid from wood lignocellulosic wastes [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2691-2701.
XU S G, WU Y, LI J M, et al. Directing the simultaneous conversion of hemicellulose and cellulose in raw biomass to lactic acid [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(10): 4244-4255.
MINH A L C, SAMUDRALA S P, BHATTACHARYA S. Valorisation of glycerol through catalytic hydrogenolysis Routes for sustainable production of value-added chemicals: Current and future trends [J]. Sustainable Energy & Fuels, 2022, 6(3): 596-639.
ZHANG G Y, JIN X, GUAN Y N, et al. Toward selective dehydrogenation of glycerol to lactic acid over bimetallic Pt-Co/CeOx catalysts [J]. Industrial & Engineering Chemistry Research, 2019, 58(31): 14548-14558.
JIANG Z W, ZHANG Z R, WU T B, et al. Efficient generation of lactic acid from glycerol over a Ru-Zn-Cu1/hydroxyapatite catalyst [J]. Chemistry-an Asian Journal, 2017, 12(13): 1598-1604.
SHEN L Q, ZHOU X, WANG A L, et al. Hydrothermal conversion of high-concentrated glycerol to lactic acid catalyzed by bimetallic CuAux (x = 0.01~0.04) nanoparticles and their reaction kinetics [J]. RSC Advances, 2017, 7(49): 30725-30739.
TANG Z C, LIU P, CAO H T, et al. Pt/ZrO2 prepared by atomic trapping: An efficient catalyst for the conversion of glycerol to lactic acid with concomitant transfer hydrogenation of cyclohexene [J]. ACS Catalysis, 2019, 9(11): 9953-9963.
BHARATH G, RAMBABU K, HAI A, et al. Development of Au and 1D hydroxyapatite nanohybrids supported on 2D boron nitride sheets as highly efficient catalysts for dehydrogenating glycerol to lactic acid [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(19): 7278-7289.
XIU Z X, WANG H Y, CAI C L, et al. Ultrafast glycerol conversion to lactic acid over magnetically recoverable Ni-NiOx@C catalysts [J]. Industrial & Engineering Chemistry Research, 2020, 59(21): 9912-9925.
TORRES S, PALACIO R, LOPEZ D. Support effect in Co3O4-based catalysts for selective partial oxidation of glycerol to lactic acid [J]. Applied Catalysis A: General, 2021, 621: 118199.
ROY D, SUBRAMANIAM B, CHAUDHARI R V. Cu-based catalysts show low temperature activity for glycerol conversion to lactic acid [J]. ACS Catalysis, 2011, 1(5): 548-551.
YIN H, ZHANG C, YIN H, et al. Hydrothermal conversion of glycerol to lactic acid catalyzed by Cu/hydroxyapatite, Cu/MgO, and Cu/ZrO2 and reaction kinetics [J]. Chemical Engineering Journal, 2016, 288: 332-343.
ZHANG J J, ZHU G Z, WANG X, et al. Selective catalytic conversion of glycerol to lactic acid over Cu-ZnO@C catalysts [J]. Catalysis Communications, 2023, 181: 106733.
YANG G Y, KE Y H, REN H F, et al. The conversion of glycerol to lactic acid catalyzed by ZrO2-supported CuO catalysts [J]. Chemical Engineering Journal, 2016, 283: 759-767.
FENG S X, TAKAHASHI K, MIURA H, et al. One-pot synthesis of lactic acid from glycerol over a Pt/L-Nb2O5 catalyst under base-free conditions [J]. Fuel Processing Technology, 2020, 197: 106202.
WANG C Y, ZHANG X Q, LI J F, et al. Gold nanoparticles on nanosheets derived from layered rare-earth hydroxides for catalytic glycerol-to-lactic acid conversion [J]. ACS Applied Materials & Interfaces, 2021, 13(1): 522-530.
XU J L, ZHANG H Y, ZHAO Y F, et al. Selective oxidation of glycerol to lactic acid under acidic conditions using AuPd/TiO2 catalyst [J]. Green Chemistry, 2013, 15(6): 1520-1525.
KOMANOYA T, SUZUKI A, NAKAJIMA K, et al. A combined catalyst of Pt nanoparticles and TiO2 with water-tolerant Lewis acid sites for one-pot conversion of glycerol to lactic acid [J]. ChemCatChem, 2016, 8(6): 1094-1099.
PURUSHOTHAMAN R K P, VAN HAVEREN J, VAN ES D S, et al. An efficient one pot conversion of glycerol to lactic acid using bimetallic gold-platinum catalysts on a nanocrystalline CeO2 support [J]. Applied Catalysis B: Environmental, 2014, 147: 92-100.
TAO M L, YI X H, DELIDOVICH I, et al. Hetropolyacid-catalyzed oxidation of glycerol into lactic acid under mild base-free conditions [J]. ChemSusChem, 2015, 8(24): 4195-4201.
NARISETTY V, COX R, BOMMAREDDY R, et al. Valorisation of xylose to renewable fuels and chemicals, an essential step in augmenting the commercial viability of lignocellulosic biorefineries [J]. Sustainable Energy & Fuels, 2021, 6(1): 29-65.
CUI Y T, LI J W, LIU Z H, et al. Alkali etching-free synthesis of hierarchical Zr-BEA zeolite as a robust catalyst for the efficient production of lactic acid from carbohydrates [J]. Microporous and Mesoporous Materials, 2023, 360: 112737.
PONCHAI P, ADPAKPANG K, THONGRATKAEW S, et al. Engineering zirconium-based UiO-66 for effective chemical conversion of D-xylose to lactic acid in aqueous condition [J]. Chemical Communications, 2020, 56(58): 8019-8022.
ZHANG Y, LUO H, KONG L, et al. Highly efficient production of lactic acid from xylose using Sn-beta catalysts [J]. Green Chemistry, 2020, 22(21): 7333-7336.
LUO D, WANG Q, YANGCHENG R, et al. Boosting the aqueous-phase production of lactic acid via dual-site activation of carbohydrates [J]. Catalysis Communications, 2023, 180: 106701.
RUNGTAWEEVORANIT B, CHAIPOJJANA K, JUNKAEW A, et al. Identification of cooperative reaction sites in metal-organic framework catalysts for high yielding lactic acid production from D-xylose [J]. ChemSusChem, 2022, 15(5): 202102653.
PAULINO P N, REIS O C, LICEA Y E, et al. Valorisation of xylose to lactic acid on morphology-controlled ZnO catalysts [J]. Catalysis Science & Technology, 2018, 8(19): 4945-4956.
WANG Q, LUO D, RAN J, et al. Solvent-free synthesis of a zirconium-carbon coordination catalyst for efficient aqueous-phase production of lactic acid from xylose [J]. Applied Catalysis A: General, 2022, 646: 118871.
KIATPHUENGPORN S, JUNKAEW A, LUADTHONG C, et al. Roles of acidic sites in alumina catalysts for efficient D-xylose conversion to lactic acid [J]. Green Chemistry, 2020, 22(24): 8572-8583.
KOSRI C, KIATPHUENGPORN S, BUTBUREE T, et al. Selective conversion of xylose to lactic acid over metal-based Lewis acid supported on gamma-Al2O3 catalysts [J]. Catalysis Today, 2021, 367: 205-212.
惠宇, 刘金玲, 秦玉才, 等. 柠檬酸改性Hβ分子筛酸性中心的调变与解析[J]. 石油化工高等学校学报, 2020, 33(3): 14-20.
HUI Y, LIU J L, QIN Y C, et al. Discrimination and regulation of the acidic sites of Hβ zeolite with citric acid treatment [J]. Journal of Petrochemical Universities, 2020, 33(3): 14-20.
杨洋, 孙娜, 王雪, 等. 梯度孔Hβ的制备及其催化苯加氢烷基化性能[J]. 辽宁石油化工大学学报, 2022, 42(1): 7-12.
YANG Y, SUN N, WANG X, et al. Preparation of hierarchical porous Hβ and its catalytic performance in benzene hydroalkylation [J]. Journal of Liaoning Petrochemical University, 2022, 42(1): 7-12.
孙祥博, 惠宇, 张景威, 等. 基于原位红外光谱法的β分子筛上噻吩烷基化反应机理探究[J]. 辽宁石油化工大学学报, 2023, 43(4): 66-71.
SUN X B, HUI Y, ZHANG J W, et al. Study on mechanism of thiophene alkylation reaction on Hβ zeolites by in⁃situ infrared spectroscopy [J]. Journal of Liaoning Petrochemical University, 2023, 43(4): 66-71.
WANG J J, XI J X, XIA Q N, et al. Recent advances in heterogeneous catalytic conversion of glucose to 5-hydroxymethylfurfural via green routes [J]. Science China Chemistry, 2017, 60(7): 870-886.
HUANG S, YANG K L, LIU X F, et al. MIL-100(Fe)-catalyzed efficient conversion of hexoses to lactic acid [J]. RSC Advances, 2017, 7(10): 5621-5627.
HOLM M S, SARAVANAMURUGAN S, TAARNING E. Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts [J]. Science, 2010, 328(5978): 602-605.
SUN Y Y, SHI L, WANG H, et al. Efficient production of lactic acid from sugars over Sn-Beta zeolite in water: Catalytic performance and mechanistic insights [J]. Sustainable Energy & Fuels, 2019, 3(5): 1163-1171.
DONG W J, SHEN Z, PENG B Y, et al. Selective chemical conversion of sugars in aqueous solutions without alkali to lactic acid over a Zn-Sn-Beta Lewis acid-base catalyst [J]. Scientific Reports, 2016, 6: 26713.
XIA M, DONG W J, SHEN Z, et al. Efficient production of lactic acid from biomass-derived carbohydrates under synergistic effects of indium and tin in In-Sn-Beta zeolites [J]. Sustainable Energy & Fuels, 2020, 4(10): 5327-5338.
SHEN Z, KONG L, ZHANG W, et al. Surface amino-functionalization of Sn-Beta zeolite catalyst for lactic acid production from glucose [J]. RSC Advances, 2019, 9(33): 18989-18995.
XIA M, SHEN Z, XIAO S Z, et al. Synergistic effects of bimetals and hierarchical structures in Mg-Sn-Beta-H zeolites for lactic acid synthesis from biomass-derived carbohydrates [J]. Catalysis Science & Technology, 2023, 13(13): 3974-3986.
KIM M, RONCHETTI S, ONIDA B, et al. Lewis acid and base catalysis of YNbO4 toward aqueous-phase conversion of hexose and triose sugars to lactic acid in water [J]. ChemCatChem, 2020, 12(1): 350-359.
TAKAGAKI A, JUNG J C, HAYASHI S. Solid Lewis acidity of boehmite gamma-AlO(OH) and its catalytic activity for transformation of sugars in water [J]. RSC Advances, 2014, 4(82): 43785-43791.
KUPILA R, LAPPALAINEN K, HU T, et al. Lignin-based activated carbon-supported metal oxide catalysts in lactic acid production from glucose [J]. Applied Catalysis A: General, 2021, 612: 118011.
WATTANAPAPHAWONG P, REUBROYCHAROEN P, YAMAGUCHI A. Conversion of cellulose into lactic acid using zirconium oxide catalysts [J]. RSC Advances, 2017, 7(30): 18561-18568.
VERZIU M, SERANO M, JURCA B, et al. Catalytic features of Nb-based nanoscopic inorganic fluorides for an efficient one-pot conversion of cellulose to lactic acid [J]. Catalysis Today, 2018, 306: 102-110.
MARIANOU A A, MICHAILOF C C, IPSAKIS D, et al. Cellulose conversion into lactic acid over supported HPA catalysts [J]. Green Chemistry, 2019, 21(22): 6161-6178.
COMAN S M, VERZIU M, TIRSOAGA A, et al. NbF5-AIF3 catalysts: Design, synthesis, and application in lactic acid synthesis from cellulose [J]. ACS Catalysis, 2015, 5(5): 3013-3026.
SHI N, LIU Q, HE X, et al. Production of lactic acid from cellulose catalyzed by easily prepared solid Al2(WO4)3 [J]. Bioresource Technology Reports, 2019, 5: 66-73.
YE J, CHEN C Y, ZHENG Y, et al. Efficient conversion of cellulose to lactic acid over yttrium modified siliceous Beta zeolites [J]. Applied Catalysis A: General, 2021, 619: 118133.
WANG F F, LIU J, LI H, et al. Conversion of cellulose to lactic acid catalyzed by erbium-exchanged montmorillonite K10 [J]. Green Chemistry, 2015, 17(4): 2455-2463.
DONG W D, OU M, QU D X, et al. Rare-earth metal yttrium-modified composite metal oxide catalysts for high selectivity synthesis of biomass-derived lactic acid from cellulose [J]. ChemCatChem, 2022, 14(12): 202200265.
JEON W, BAN C, PARK G, et al. Hydrothermal conversion of macroalgae-derived alginate to lactic acid catalyzed by metal oxides [J]. Catalysis Science & Technology, 2016, 6(4): 1146-1156.
KUN-ASA K, REUBROYCHAROEN P, YAMAZAKI K, et al. Magnesium oxide-catalyzed conversion of chitin to lactic acid [J]. Chemistryopen, 2021, 10(3): 308-315.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构