浏览全部资源
扫码关注微信
太原理工大学 省部共建煤基能源清洁高效利用国家重点实验室,煤科学与技术教育部重点实验室, 山西 太原 030024
曲伟强(1996—),硕士研究生,研究方向为超级电容器,E-mail:330279976@qq.com。
冯宇(1991—),博士,副教授,研究方向为煤基炭材料,E-mail:fengyu@tyut.edu.cn。
纸质出版日期:2024-10-25,
收稿日期:2023-12-13,
修回日期:2024-01-18,
移动端阅览
曲伟强,赵佳辉,王双等.超级电容器用生物质基碳材料研究进展[J].低碳化学与化工,2024,49(10):38-46.
QU Weiqiang,ZHAO Jiahui,WANG Shuang,et al.Research progress of biomass-based carbon materials for supercapacitors[J].Low-carbon Chemistry and Chemical Engineering,2024,49(10):38-46.
曲伟强,赵佳辉,王双等.超级电容器用生物质基碳材料研究进展[J].低碳化学与化工,2024,49(10):38-46. DOI: 10.12434/j.issn.2097-2547.20230404.
QU Weiqiang,ZHAO Jiahui,WANG Shuang,et al.Research progress of biomass-based carbon materials for supercapacitors[J].Low-carbon Chemistry and Chemical Engineering,2024,49(10):38-46. DOI: 10.12434/j.issn.2097-2547.20230404.
超级电容器作为一种清洁型电化学储能器件在实现可再生能源存储转化领域具有巨大潜力,而碳材料因具有微观孔隙结构可调节、化学稳定性优异的优点在电化学储能领域得到了广泛应用。与此同时,生物质作为制备碳基材料的可再生前体,具有储量丰富、易获取、环保且成本低的优点。然而,由于生物质碳前体的化学组成复杂,导致不同生物质衍生碳材料在微观结构和表面性质方面存在较大差异,生物质衍生碳材料在超级电容器中的实际应用具有一定挑战。对超级电容器用生物质基碳材料的研究现状进行了综述,总结了生物质的组成和生物质基碳材料的制备工艺对生物质基碳材料微观结构的影响,并对具有不同维度结构的生物质基碳材料在超级电容器中的应用进行了介绍。对生物质基碳材料在超级电容器中的应用进行了展望,以期为生物质基碳材料的结构和表面功能调控以及开发低成本且性能优异的超级电容器的电极材料提供参考。
Supercapacitors
as clean electrochemical energy storage devices
have immense potential in the field of renewable energy storage and conversion. Carbon materials
known for their adjustable micro-porous structures and excellent chemical stability
are widely used in electrochemical energy storage. Concurrently
biomass
as a renewable precursor for preparing carbon-based materials
boasts advantages such as abundant availability
easy access
environmental friendliness and low cost. However
the complex chemical composition of biomass-derived carbon precursors results in significant variations in microstructure and surface properties of the derived carbon materials
posing certain challenges for their practical application in supercapacitors. The current states of research on biomass-based carbon materials for supercapacitors were reviewed. The influences of common compositions of biomass and the primary fabrication techniques of biomass-based carbon materials on the microstructures of the biomass-based carbon materials were summarized
and the applications of biomass-based carbon materials with different dimensional structures in supercapacitors were introduced. The future prospects of biomass-based carbon materials for supercapacitors were discussed
aiming to provide theoretical insights for the structural and surface functional control of biomass-based carbon materials
and the development of low-cost and high-performance electrode materials for supercapacitors.
生物质热解碳材料电化学超级电容器
biomasspyrolysiscarbon materialselectrochemistrysupercapacitors
杨怡洛, 龙垠荧, 曹海兵, 等. 生物质基多孔碳材料作为超级电容器电极的研究进展[J]. 中国造纸, 2023, 42(7): 118-129.
YANG Y L, LONG G Y, CAO H B, et al. Research progress of biomass-based porous carbon materials as supercapacitor electrodes [J]. China Pulp & Paper, 2023, 42(7): 118-129.
YU Z N, TETARD L, ZHAI L, et al. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions [J]. Energy & Environmental Science, 2015, 8(3): 702-730.
WANG Z H, SHEN D K, WU C F, et al. State-of-the-art on the production and application of carbon nanomaterials from biomass [J]. Green Chemistry, 2018, 20(22): 5031-5057.
SHEN K, CHEN X D, CHEN J Y, et al. Development of MOF-derived carbon-based nanomaterials for efficient catalysis [J]. ACS Catalysis, 2016, 6(9): 5887-5903.
IBRAHIM M, ABDELHAMID H N, ABUELFTOOH A M, et al. Covalent organic frameworks (COFs)-derived nitrogen-doped carbon/reduced graphene oxide nanocomposite as electrodes materials for supercapacitors [J]. Journal of Energy Storage, 2022, 55: 105375.
沙畅畅, 毛杨杨, 曹永安, 等. 用于锂硫电池正极的生物质碳材料制备与应用[J]. 石油化工高等学校学报, 2020, 33(3): 1-7.
SHA C C, MAO Y Y, CAO Y A, et al. Preparation and application of biomass-derived carbon materials in lithium-sulfur battery cathode materials [J]. Journal of Petrochemical Universities, 2020, 33(3): 1-7.
WANG J S, ZHANG X, LI Z, et al. Recent progress of biomass-derived carbon materials for supercapacitors [J]. Journal of Power Sources, 2020, 451: 227794.
WANG Q, ZHOU M, ZHANG Y, et al. Large surface area porous carbon materials synthesized by direct carbonization of banana peel and citrate salts for use as high-performance supercapacitors [J]. Journal of Materials Science: Materials in Electronics, 2018, 29: 4294-4300.
JIANG J M, ZHANG Y D, NIE P, et al. Progress of nanostructured electrode materials for supercapacitors [J]. Advanced Sustainable Systems, 2018, 2(1): 1700110.
WANG Y L, ZHANG M C, SHEN X Y, et al. Biomass-derived carbon materials: Controllable preparation and versatile applications [J]. Small, 2021, 17(40): 2008079.
HABIBI Y, LUCIA L A, ROJAS O J. Cellulose nanocrystals: Chemistry, self-assembly, and applications [J]. Chemical Reviews, 2010, 110(6): 3479-3500.
WERNER K, POMMER L, BROSTRÖM M. Thermal decomposition of hemicelluloses [J]. Journal of Analytical and Applied Pyrolysis, 2014, 110: 130-137.
LIU K X, LI H Q, ZHANG J, et al. The effect of non-structural components and lignin on hemicellulose extraction [J]. Bioresource Technology, 2016, 214: 755-760.
WANG Y, YANG R, LI M, et al. Hydrothermal preparation of highly porous carbon spheres from hemp (Cannabis sativa L.) stem hemicellulose for use in energy-related applications [J]. Industrial Crops and Products, 2015, 65: 216-226.
XIA M W, CHEN W, WU J, et al. Organic salt-assisted pyrolysis for preparation of porous carbon from cellulose, hemicellulose and lignin: New insight from structure evolution [J]. Fuel, 2021, 291: 120185.
LAURICHESSE S, AVÉROUS L. Chemical modification of lignins: Towards biobased polymers [J]. Progress in Polymer Science, 2014, 39(7): 1266-1290.
KAN T, STREZOV V, EVANS T J. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters [J]. Renewable and Sustainable Energy Reviews, 2016, 57: 1126-1140.
LU Q, YANG X C, DONG C Q, et al. Influence of pyrolysis temperature and time on the cellulose fast pyrolysis products: Analytical Py-GC/MS study [J]. Journal of Analytical and Applied Pyrolysis, 2011, 92(2): 430-438.
MCGRATH T E, CHAN W G, HAJALIGOL M R. Low temperature mechanism for the formation of polycyclic aromatic hydrocarbons from the pyrolysis of cellulose [J]. Journal of Analytical and Applied Pyrolysis, 2003, 66(2): 51-70.
SHEN D K, GU S, BRIDGWATER A V. Study on the pyrolytic behaviour of xylan-based hemicellulose using TG-FTIR and Py-GC-FTIR [J]. Journal of Analytical and Applied Pyrolysis, 2010, 87(2): 199-206.
KUBO S, KADLA J F. Hydrogen bonding in lignin: A Fourier transform infrared model compound study [J]. Biomacromolecules, 2005, 6(5): 2815-2821.
WANG S R, WANG K G, LIU Q, et al. Comparison of the pyrolysis behavior of lignins from different tree species [J]. Biotechnology Advances, 2009, 27(5): 562-567.
COLLARD F X, BLIN J. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin [J]. Renewable and Sustainable Energy Reviews, 2014, 38: 594-608.
YANG H P, YAN R, CHEN H P, et al. In-depth investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose and lignin [J]. Energy & Fuels, 2006, 20(1): 388-393.
DENG J, XIONG T Y, WANG H Y, et al. Effects of cellulose, hemicellulose, and lignin on the structure and morphology of porous carbons [J]. ACS Sustainable Chemistry & Engineering, 2016, 4(7): 3750-3756.
昝逸凡, 张彦飞, 赵新鹏, 等. 原生生物质水热炭化制备碳材料及其应用[J]. 辽宁石油化工大学学报, 2020, 40(4): 70-79.
ZAN Y F, ZHANG Y F, ZHAO X P, et al. Preparation and application of carbon materials from primary biomass by hydrothermal carbonization [J]. Journal of Liaoning Petrochemical University, 2020, 40(4): 70-79.
SUN X M, LI Y D. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles [J]. Angewandte Chemie International Edition, 2004, 43(5): 597-601.
CHEN T, YE T T, ZHU J, et al. Small-sized biomass-derived hydrothermal carbon with enriched oxygen groups quickens benzene hydroxylation to phenol with dioxygen [J]. Applied Catalysis A: General, 2021, 626: 118356.
CHAUDHARI K N, SONG M Y, YU J S. Transforming hair into heteroatom-doped carbon with high surface area [J]. Small, 2014, 10(13): 2625-2636.
LIU Y, ZHANG Y, ZHANG Y Q, et al. Investigation on the structural feature and gasification reactivity of bio-char derived from energy crop [J]. Fuel, 2021, 289(4): 119904.
LUO W, WANG B, HERON C G, et al. Pyrolysis of cellulose under ammonia leads to nitrogen-doped nanoporous carbon generated through methane formation [J]. Nano Letters, 2014, 14(4): 2225-2229.
ZENG J, WEI L, GUO X. Bio-inspired high-performance solid-state supercapacitors with the electrolyte, separator, binder and electrodes entirely from kelp [J]. Journal of Materials Chemistry A, 2017, 5(48): 25282-25292.
RAYMUNDO-PIÑERO E, AZAÏS P, CACCIAGUERRA T, et al. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation [J]. Carbon, 2005, 43(4): 786-795.
ZHANG G X, CHEN Y M, CHEN Y G, et al. Activated biomass carbon made from bamboo as electrode material for supercapacitors [J]. Materials Research Bulletin, 2018, 102: 391-398.
SEVILLA M, MOKAYA R. Energy storage applications of activated carbons: supercapacitors and hydrogen storage [J]. Energy & Environmental Science, 2014, 7(4): 1250-1280.
王芳平, 马婧, 李小亚, 等. 板栗壳生物炭高性能对称性超级电容器电极材料的制备及性能[J]. 化工进展, 2021, 40(8): 4381-4387.
WANG F P, MA J, LI X Y, et al. Preparation and properties of chestnut shell-based biochar electrode material for high-performance symmetrical supercapacitor [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4381-4387.
ZHU Z Y, XU Z. The rational design of biomass-derived carbon materials towards next-generation energy storage: A review [J]. Renewable and Sustainable Energy Reviews, 2020, 134: 110308.
WEI Q L, CHEN Z M, CHENG Y Y, et al. Preparation and electrochemical performance of orange peel based-activated carbons activated by different activators [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 574: 221-227.
JIANG G S, SENTHIL R A, SUN Y Z, et al. Recent progress on porous carbon and its derivatives from plants as advanced electrode materials for supercapacitors [J]. Journal of Power Sources, 2022, 520: 230886.
GUO S H, PENG J H, LI W, et al. Effects of CO2 activation on porous structures of coconut shell-based activated carbons [J]. Applied Surface Science, 2009, 255(20): 8443-8449.
CHEN Q, TAN X F, LIU Y G, et al. Biomass-derived porous graphitic carbon materials for energy and environmental applications [J]. Journal of Materials Chemistry A, 2020, 8(12): 5773-5811.
ŌYA A, ŌTANI S. Influences of particle size of metal on catalytic graphitization of non-graphitizing carbons [J]. Carbon, 1981, 19(5): 391-400.
JI X Q, SUN D L, ZOU W H, et al. Ni/MnO2 doping pulping lignin-based porous carbon as supercapacitors electrode materials [J]. Journal of Alloys and Compounds, 2021, 876: 160112.
YANG S, WANG S L, LIU X, et al. Biomass derived interconnected hierarchical micro-meso-macro-porous carbon with ultrahigh capacitance for supercapacitors [J]. Carbon, 2019, 147: 540-549.
QU H X, ZHANG X J, ZHAN J J, et al. Biomass-based nitrogen-doped hollow carbon nanospheres derived directly from glucose and glucosamine: Structural evolution and supercapacitor properties [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(6): 7380-7389.
HAO J, WANG J M, QIN S, et al. B/N co-doped carbon nanosphere frameworks as high-performance electrodes for supercapacitors [J]. Journal of Materials Chemistry A, 2018, 6(17): 8053-8058.
HOANG V C, NGUYEN L H, GOMES V G. High efficiency supercapacitor derived from biomass based carbon dots and reduced graphene oxide composite [J]. Journal of Electroanalytical Chemistry, 2019, 832: 87-96.
LIU S, CAI Y, ZHAO X, et al. Sulfur-doped nanoporous carbon spheres with ultrahigh specific surface area and high electrochemical activity for supercapacitors [J]. Journal of Power Sources, 2017, 360: 373-382.
CAI J, NIU H T, LI Z Y, et al. High-performance supercapacitor electrode materials from cellulose-derived carbon nanofibers [J]. ACS Applied Materials & Interfaces, 2015, 7(27): 14946-14953.
CAO Q P, ZHU M N, CHEN J A, et al. Novel lignin-cellulose-based carbon nanofibers as high-performance supercapacitors [J]. ACS Applied Materials & Interfaces, 2019, 12(1): 1210-1221.
KIM S G, JUN J, KIM Y K, et al. Facile synthesis of Co3O4-incorporated multichannel carbon nanofibers for electrochemical applications [J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20613-20622.
LU S Y, JIN M, ZHANG Y, et al. Chemically exfoliating biomass into a grapheme-like porous active carbon with rational pore structure, good conductivity, and large surface area for high-performance supercapacitors [J]. Advanced Energy Materials, 2018, 8(11): 1702545.
LI T, MA R, XU X H, et al. Microwave-induced preparation of porous graphene nanosheets derived from biomass for supercapacitors [J]. Microporous and Mesoporous Materials, 2021, 324: 111277.
WANG C J, WU D P, WANG H J, et al. Biomass derived nitrogen-doped hierarchical porous carbon sheets for supercapacitors with high performance [J]. Journal of Colloid and Interface Science, 2018, 523: 133-143.
LIU B, YANG M, CHEN H B, et al. Graphene-like porous carbon nanosheets derived from salvia splendens for high-rate performance supercapacitors [J]. Journal of Power Sources, 2018, 397: 1-10.
WANG C J, WU D P, WANG H J, et al. Nitrogen-doped two-dimensional porous carbon sheets derived from clover biomass for high performance supercapacitors [J]. Journal of Power Sources, 2017, 363: 375-383.
LIU B, LIU Y, CHEN H, et al. Oxygen and nitrogen co-doped porous carbon nanosheets derived from Perilla frutescens for high volumetric performance supercapacitors [J]. Journal of power sources, 2017, 341: 309-317.
DENG X Y, LI J J, MA L Y, et al. Three-dimensional porous carbon materials and their composites as electrodes for electrochemical energy storage systems [J]. Materials Chemistry Frontiers, 2019, 3(11): 2221-2245.
ZHAO G Z, LI Y J, ZHU G, et al. Waste fruit grain orange-derived 3D hierarchically porous carbon for high-performance all-solid-state supercapacitor [J]. Ionics, 2019, 25(8): 3935-3944.
CHEN H N, LEI X P, YU T, et al. Ultra-high specific capacitance of self-doped 3D hierarchical porous turtle shell-derived activated carbon for high-performance supercapacitors [J]. Ceramics International, 2022, 48(4): 5289-5298.
ZHOU H M, SHU R, GUO F Q, et al. N-O-P co-doped porous carbon aerogel derived from low-cost biomass as electrode material for high-performance supercapacitors [J]. Diamond and Related Materials, 2021, 120: 108614.
SONG G L, GAI L X, YANG K K, et al. A versatile N-doped honeycomb-like carbonaceous aerogels loaded with bimetallic sulfide and oxide for superior electromagnetic wave absorption and supercapacitor applications [J]. Carbon, 2021, 181: 335-347.
WEI X J, WEI J S, LI Y B, et al. Robust hierarchically interconnected porous carbons derived from discarded Rhus typhina fruits for ultrahigh capacitive performance supercapacitors [J]. Journal of Power Sources, 2019, 414: 13-23.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构