浏览全部资源
扫码关注微信
1.北京铝能清新环境技术有限公司,北京 100036
2.中铝环保节能集团有限公司,北京 102200
3.太原理工大学 环境科学与工程学院,山西 太原 030053
唐朝勇(1979—),本科,高级工程师,研究方向为大气环保治理,E-mail:14183281@qq.com。
闫飞飞(1992—),硕士,工程师,研究方向为污染控制与环境化学,E-mail:yanfeifei0820@163.com。
纸质出版日期:2024-10-25,
收稿日期:2023-12-12,
修回日期:2024-01-29,
移动端阅览
唐朝勇,闫飞飞,练以诚等.常温干法脱硫剂研究进展与展望[J].低碳化学与化工,2024,49(10):56-65.
TANG Chaoyong,YAN Feifei,LIAN Yicheng,et al.Research progress and prospect of desulfurizer for room temperature dry desulfurization[J].Low-carbon Chemistry and Chemical Engineering,2024,49(10):56-65.
唐朝勇,闫飞飞,练以诚等.常温干法脱硫剂研究进展与展望[J].低碳化学与化工,2024,49(10):56-65. DOI: 10.12434/j.issn.2097-2547.20230403.
TANG Chaoyong,YAN Feifei,LIAN Yicheng,et al.Research progress and prospect of desulfurizer for room temperature dry desulfurization[J].Low-carbon Chemistry and Chemical Engineering,2024,49(10):56-65. DOI: 10.12434/j.issn.2097-2547.20230403.
天然气、沼气和煤制气等气体脱硫是实现其高值利用的重要环节,对能源清洁高效利用意义重大。硫化氢(H
2
S)是一种具有毒性和腐蚀性的含硫气体,对工业设备、生态环境和人体健康具有危害。干法脱硫工艺具有脱硫精度高、适用范围广和设备简单等优点,特别是常温干法脱硫,因其脱硫成本低和效率高而受到广泛关注。综述了活性炭、金属氧化物和沸石分子筛3种常温干法脱硫剂的研究进展,分析总结了这3种脱硫剂的制备方法、脱硫机理、使用条件和优缺点,对常温干法脱硫剂的研究进展进行了总结,以期为相关研究提供参考。
Desulfurization of fuel gases such as natural gas
biogas and coal gas is an important step to achieve their high-value utilization
and is of great significance for clean and eff
icient utilization of energy. Hydrogen sulfide (H
2
S) is a sulfur-containing gas that is toxic and corrosive
posing great hazards to industrial equipment
ecological environment and human health. The dry desulfurization process has the advantages of high desulfurization accuracy
wide application range
simple equipment
etc. In particular
the room temperature dry desulfurization process has attracted widespread attention due to its low desulfurization cost and high efficiency. The research progress of three desulfurizers for room temperature dry desulfurization was reviewed
namely activated carbon
metal oxides
and zeolite molecular sieves. The preparation methods
desulfurization mechanisms
operating conditions
advantages and disadvantages of the three desulfurizers were analyzed. And the research progress of the desulfurizers for room temperature dry desulfurization was summarized to provide reference for related research.
干法脱硫活性炭金属氧化物沸石分子筛
dry desulfurizationactivated carbonsmetal oxideszeolite molecular sieves
PAN Y K, CHEN M Q, HU M F, et al. Probing the room-temperature oxidative desulfurization activity of three-dimensional alkaline graphene aerogel [J]. Applied Catalysis B: Environmental, 2020, 262: 118266.
SHAH M S, TSAPATSIS M, SIEPMANN J I. Hydrogen sulfide capture: From absorption in polar liquids to oxide, zeolite, and metal-organic framework adsorbents and membranes [J]. Chemical Reviews, 2017, 117(14): 9755-9803.
YIN M X, YUN Z C, FAN F Y, et al. Insights into the mechanism of low-temperature H2S oxidation over Zn-Cu/Al2O3 catalyst [J]. Chemosphere, 2022, 291(3): 133105-133110.
CAO Y N, HU X, LIN X B, et al. Low-temperature desulfurization on iron oxide hydroxides: Influence of precipitation pH on structure and performance [J]. Industrial & Engineering Chemistry Research, 2015, 54(9): 2419-2424.
郭汉贤, 樊惠玲, 李彦旭. 金属氧化物脱硫/固硫反应动力学中的补偿效应[J]. 化学学报, 2002, 60(10): 1806-1810.
GUO H X, FAN H L, LI Y X. Compensation effectin kineticsof desulfurization and SO2 fixing by metal oxides [J]. Acta Chimica Sinica, 2002, 60(10): 1806-1810.
鲍柳旭, 李挺, 任秀蓉, 等. 低温锌基脱硫剂研究进展[J]. 天然气化工—C1化学与化工, 2018, 43(2): 109-113.
BAO L X, LI T, REN X R, et al. Research progress in low temperature zinc based desulfurizers [J]. Natural Gas Chemical Industry, 2018, 43(2): 109-113.
王睿, 张永艳. 炭基锌铁锰高温脱硫剂硫化再生行为的研究[J]. 分子科学学报, 2017, 33(2): 171-176.
WANG R, ZHANG Y Y. Sulfidation and regeneration performance of Zn-Fe-Mn-O/AC for hot gas desulfurizer [J]. Journal of Molecular Sciences, 2017, 33(2): 171-176.
WANG X W, ZHANG R, LI Q C, et al. Insights into H2S-absorption and oxidation-regeneration behavior of Ni-doped ZnO-based sorbents supported on SBA-15 for desulfurization of hot coal gas [J]. Fuel, 2023, 332(2): 126052-126056.
杨超. 多孔纳米氧化锌基常温精脱硫剂制备及构效关系[D]. 太原: 太原理工大学, 2020.
YANG C. Preparation of porous nano ZnO based room temperature deep desulfurizer and its structure-activity relationship [D]. Taiyuan: Taiyuan University of Technology, 2020.
SHEN F, LIU J H, ZHANG Z T, et al. Density functional study of hydrogen sulfide adsorption mechanism on activated carbon [J]. Fuel Processing Technology, 2018, 171: 258-264.
BANDOSZ T J. On the adsorption/oxidation of hydrogen sulfide on activated carbons at ambient temperatures [J]. Journal of Colloid & Interface Science, 2002, 246(1): 1-20.
BAGREEV A, BANDOSZ T J. On the mechanism of hydrogen sulfide removal from moist air on catalytic carbonaceous adsorbents [J]. Industrial & Engineering Chemistry Research, 2005, 44(3): 530-538.
CHOO H S, LAU L C, Mohamed A R, et al. Hydrogen sulfide adsorption by alkaline impregnated coconut shell activated carbon [J]. Journal of Engineering Science and Technology, 2013, 8(6): 741-753.
XIAO Y H, WANG S D, WU D Y, et al. Catalytic oxidation of hydrogen sulfide over unmodified and impregnated activated carbon [J]. Separation and Purification Technology, 2008, 59(3): 326-332.
MENEZES R L C B, MOURA K O, Sebastião M P, et al. Insights on the mechanisms of H2S retention at low concentration on impregnated carbons [J]. Industrial & Engineering Chemistry Research, 2018, 57(6): 2248-2257.
SIRIWARDANE I W, UDANGAWA R, DE SILVA R M, et al. Synthesis and characterization of nano magnesium oxide impregnated granular activated carbon composite for H2S removal applications [J]. Materials & Design, 2017, 136: 127-136.
BUREAU A C, OLDEN M J F. Operation of the frodingham desulfurizing plant at Exeter. [Removal of 99% of H sulfide and 90% of other organic compounds common to coal gas; sulfuric acid produced] [J]. Chemical Engineering Journal, 1967, 206.
WESTMORELAND P R, HARRISON D P. Evaluation of candidate solids for high-temperature desulfurization of low-btu gases [J]. Environmental Science Technology 1976, 10(7): 659-661.
XUE M, CHITRAKAR R, SAKANE K, et al. Screening of adsorbents for removal of H2S at room temperature [J]. Green Chemistry 2003, 5(5): 529-534.
宋佳佳. 氧化铁基脱硫剂对H2S的脱除及脱硫剂的再生机理研究[D]. 太原: 太原理工大学, 2013.
SONG J J. Study on desulfurization of iron oxide-based desulfurizer and regeneration mechanism of desulfurizer [D]. Taiyuan: Taiyuan University of Technology, 2013.
SONG J J, NIU X Q, LING L X, et al. A density functional theory study on the interaction mechanism between H2S and the α-Fe2O3 (0001) surface [J]. Fuel Processing Technology, 2013, 115: 26-33.
CAO Y N, ZHENG X H, DU Z J, et al. Low-temperature H2S removal from gas streams over γ-FeOOH, γ-Fe2O3, and α-Fe2O3: Effects of the hydroxyl group, defect, and specific surface area [J]. Industrial & Engineering Chemistry Research, 2019, 58(42): 19353-19360.
CAO Y N, SHEN L J, HU X L, et al. Low temperature desulfurization on Co-doped α-FeOOH: Tailoring the phase composition and creating the defects [J]. Chemical Engineering Journal 2016, 306: 124-130.
SHEN L J, CAO Y N, DU Z J, et al. Illuminate the active sites of γ-FeOOH for low-temperature desulfurization [J]. Applied Surface Science 2017, 425: 212-219.
LIU X M, MENG X, ZHAO J T. Synthesis of nanocrystalline iron oxides with mesostructure as desulfurizer [J]. Materials Letters, 2013, 92: 255-258.
HUANG G, HE E Y, WANG Z D, et al. Synthesis and characterization of γ-Fe2O3 for H2S removal at low temperature [J]. Industrial & Engineering Chemistry Research 2015, 54(34): 8469-8478.
DAVYDOV A, CHUANG K T, SANGER A R. Mechanism of H2S oxidation by ferric oxide and hydroxide surfaces [J]. The Journal of Physical Chemistry B 1998, 102(24): 4745-4752.
WANG T, HU B, LI J W, et al. Removal of hydrogen sulfide by hydroxyl-ferric oxide in a slurry reactor at low temperature [J]. Industrial & Engineering Chemistry Research, 2020, 59(4): 1402-1412.
YANG C, FLORENT M, DE FALCO G, et al. ZnFe2O4/activated carbon as a regenerable adsorbent for catalytic removal of H2S from air at room temperature [J]. Chemical Engineering Journal 2020, 394(49): 8388-8396.
WANG X Z, DING L, ZHAO Z B, et al. Novel hydrodesulfurization nano-catalysts derived from Co3O4 nanocrystals with different shapes [J]. Catalysis Today 2011, 175(1): 509-514.
TOPSOE H, CLSUSEN B S, CANDIA R, et al. In situ Mössbauer emission spectroscopy studies of unsupported and supported sulfided CoMo hydrodesulfurization catalysts: Evidence for and nature of a CoMoS phase [J]. Journal of Catalysis, 1981, 68(2): 433-452.
PAHALAGEDARA L R, POYRAZ A S, SONG W, et al. Low temperature desulfurization of H2S: High sorption capacities by mesoporous cobalt oxide via increased H2S diffusion [J]. Chemistry of Materials, 2014, 26(22): 6613-6621.
WANG J, YANG C, ZHAO Y R, et al. Synthesis of porous cobalt oxide and its performance for H2S removal at room temperature [J]. Industrial & Engineering Chemistry Research, 2017, 56(44): 12621-21269.
FLORENT M, BANDOSZ T J. Effects of surface heterogeneity of cobalt oxyhydroxide/graphite oxide composites on reactive adsorption of hydrogen sulfide [J]. Microporous Mesoporous Materials, 2015, 204: 8-14.
BAIRD T, DENNY P J, HOYLE R, et al. Modified zinc oxide absorbents for low-temperature gas desulfurization [J]. Journal of the Chemical Society, Faraday Transactions, 1992, 88(22): 3375-3382.
AZZAM S A, ALSHAFEI F H, LÓPEZ-AUSENS T, et al. Effects of morphology and surface properties of copper oxide on the removal of hydrogen sulfide from gaseous streams [J]. Industrial & Engineering Chemistry Research, 2019, 58(40): 18836-18847.
闫波, 王新, 邵纯红, 等. 纳米氧化铜的制备及常温脱硫效能研究[J]. 无机化学学报, 2007, 23(11): 1869-1874.
YAN B, WANG X, SHAO C H, et al. CuO nanoparticles: Preparation and desulfurization performance at normal temperature [J]. Chinese Journal of Inorganic Chemistry, 2007, 23(11): 1869-1874.
MONTES D, TOCUYO E, GONZALEZ E, et al. Reactive H2S chemisorption on mesoporous silica molecular sieve-supported CuO or ZnO [J]. Microporous Mesoporous Materials, 2013, 168: 111-120.
LONKAR S P, PILLAI V V, STEPHEN S, et al. Facile in situ fabrication of nanostructured graphene-CuO hybrid with hydrogen sulfide removal capacity [J]. Nano-Micro Letters, 2016, 8: 312-319.
WANG J, WANG L J, FAN H L, et al. Highly porous copper oxide sorbent for H2S capture at ambient temperature [J]. Fuel 2017, 209: 329-338.
LIU D, CHEN S Y, FEI X Y, et al. Regenerable CuO-based adsorbents for low temperature desulfurization application [J]. Industrial & Engineering Chemistry Research, 2015, 54(14): 3556-3562.
YANG C, YANG S, FAN H, et al. Tuning the ZnO-activated carbon interaction through nitrogen modification for enhancing the H2S removal capacity [J]. Journal of Colloid and Interface Science, 2019, 555: 548-557.
SUN J, MODI S, LIU K, et al. Kinetics of zinc oxide sulfidation for packed-bed desulfurizer modeling [J]. Energy & Fuels, 2007, 21(4): 1863-1871.
DAVIDSON J M, LAWRIE C H, SOHAIL K. Kinetics of the absorption of hydrogen sulfide by high purity and doped high surface area zinc oxide [J]. Industrial & Engineering Chemistry Research, 1995, 34(9): 2981-2989.
冯续, 赵素云, 李博, 等. 影响氧化锌脱硫的因素[J]. 化学工业与工程技术, 2010, 31(4): 31-34.
FENG X, ZHAO S Y, LI B, et al. Factor affecting zinc oxide desulfurization [J]. Journal of Chemical Industry & Engineering, 2010, 31(4): 31-34.
YANG C, FALCO D G, FLORENT M, et al. Support features govern the properties of the active phase and the performance of bifunctional ZnFe2O4-based H2S adsorbents [J]. Carbon, 2020, 169: 327-337.
HERNÁNDEZ S P, CHIAPPERO M, RUSSO N, et al. A novel ZnO-based adsorbent for biogas purification in H2 production systems [J]. Chemical Engineering Journal, 2011, 176: 272-279.
YANG C, WANG J, FAN H L, et al. Contributions of tailored oxygen vacancies in ZnO/Al2O3 composites to the enhanced ability for H2S removal at room temperature [J]. Fuel, 2018, 215: 695-703.
BALSAMO M, CIMINO S, DE FAICO G, et al. ZnO-CuO supported on activated carbon for H2S removal at room temperature [J]. Chemical Engineering Journal, 2016, 304: 399-407.
DE FALCO G, MONTAGNARO F, BALSAMO M, et al. Synergic effect of Zn and Cu oxides dispersed on activated carbon during reactive adsorption of H2S at room temperature [J]. Microporous and Mesoporous Materials, 2018, 257: 135-146.
LIANG S Y, PENG B, LIU S Y, et al. Low-temperature highly efficient and selective removal of H2S over three-dimensional Zn-Cu-based materials in an anaerobic environment [J]. Environmental Science Technology, 2020, 54(10): 5964-5972.
LIU G Q, HUANG Z H, KANG F Y. Preparation of ZnO/SiO2 gel composites and their performance of H2S removal at room temperature [J]. Journal of Hazardous Materials, 2012, 215(216): 166-172.
YANG C, KOU J W, FAN H L, et al. Facile and versatile sol-gel strategy for the preparation of a high-loaded ZnO/SiO2 adsorbent for room-temperature H2S removal [J]. Langmuir, 2019, 35(24): 7759-7768.
WANG L J, FAN H L, SHANG GUAN J, et al. Design of a sorbent to enhance reactive adsorption of hydrogen sulfide [J]. ACS Applied Materials Interfaces, 2014, 6(23): 21167-21177.
吉轲. 铁基脱硫剂常温脱硫与再生性能研究[D]. 大连: 大连理工大学, 2021.
JI K. Study on the desulfurization and regeneration performance of iron-based desulfurizer at room temperature [D]. Dalian: Dalian University of Technology, 2021.
郭燕, 项裕桥, 赵柏, 等. 分子筛材料在煤气脱H2S中的研究进展[J]. 洁净煤技术, 2022, 28(1): 175-186.
GUO Y, XIANG Y Q, ZHAO B, et al. Research advance on H2S removing over zeolites and its application in coal gas [J]. Clean Coal Technology, 2022, 28(1): 175-186.
邱广敏, 黄宝丽, 王新民, 等. HZSM-5沸石分子筛吸附H2S的理论研究[J]. 石油与天然气化工, 2006, 35(2): 107-109.
QIU G M, HUANG B L, WANG X M, et al. The theoretical study of H2S adsorption on HZSM-5 zeolite [J]. Chemical Engineering of Oil & Gas, 2006, 35(2): 107-109.
WATANABE S. Chemistry of H2S over the surface of common solid sorbents in industrial natural gas desulfurization [J]. Catalysis Today, 2021, 37: 204-220.
FELLAH M F. Adsorption of hydrogen sulfide as initial step of H2S removal: A DFT study on metal exchanged ZSM-12 clusters [J]. Fuel Processing Technology, 2016, 144: 191-196.
ALONSO-VICARIO A, OCHOA-GÓMEZ J R, GIL-RÍO S, et al. Purification and upgrading of biogas by pressure swing adsorption on synthetic and natural zeolites [J]. Microporous and Mesoporous Materials, 2010, 134(1/2/3): 100-107.
LIU X P, WANG R. Effective removal of hydrogen sulfide using 4A molecular sieve zeolite synthesized from attapulgite [J]. Journal of Hazardous Materials 2017, 326: 157-164.
KHABAZIPOUR M, ANBIA M. Removal of hydrogen sulfide from gas streams using porous materials: A review [J]. Industrial & Engineering Chemistry Research, 2019, 58(49): 22133-22164.
CHEN X, SHEN B, SUN H, et al. Ion-exchange modified zeolites X for selective adsorption desulfurization from Claus tail gas: Experimental and computational investigations [J]. Microporous and Mesoporous Materials 2018, 261: 227-236.
MICOLI L, BAGNASCO G, TURCO M. H2S removal from biogas for fuelling MCFCs: New adsorbing materials [J]. International Journal of Hydrogen Energy, 2014, 39(4): 1783-1787.
LEE S K, JANG Y N, BAE I K, et al. Adsorption of toxic gases on iron-incorporated Na-A zeolites synthesized from melting slag [J]. Materials Transactions, 2009, 50(10): 2476-2483.
WANG X H, SUN T H, YANG J, et al. Low-temperature H2S removal from gas streams with SBA-15 supported ZnO nanoparticles [J]. Chemical Engineering Journal, 2008, 142(1): 48-55.
WANG X H. Chemical characterization of mesoporous material supported ZnO nanoparticles for hydrogen sulfide capture from gas streams [J]. Advanced Materials Research, 2010, 129: 143-148.
GENG Q, WANG L J, YANG C, et al. Room-temperature hydrogen sulfide removal with zinc oxide nanoparticle/molecular sieve prepared by melt infiltration [J]. Fuel Processing Technology, 2019, 185: 26-37.
WU M M, JIA L, FAN H L, et al. Hot coal gas desulfurization using regenerable ZnO/MCM41 prepared via one-step hydrothermal synthesis [J]. Energy & Fuels, 2017, 31(9): 9814-9823.
YAZADANBAKHS F, ALIZADEHGIASHI M, BLÄSING M, et al. Cu-Cr-O functionalized ETS-2 nanoparticles for hot gas desulfurization [J]. Journal of Nanoscience and Nanotechnology, 2016, 16(1): 878-884.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构