浏览全部资源
扫码关注微信
同济大学 环境科学与工程学院,污染控制与资源再利用国家重点实验室,中国气象局上海城市气候变化与应对重点实验室,上海 200092
闫江毅(1996—),博士研究生,研究方向为新型功能化纳米材料,E-mail:jyyan@tongji.edu.cn。
李风亭(1963—),博士,教授,研究方向为新型功能化纳米气体分离材料、存储材料及储能材料,E-mail:fengting@tongji.edu.cn。
纸质出版日期:2024-10-25,
收稿日期:2023-12-07,
修回日期:2024-01-11,
移动端阅览
闫江毅,丁一汇,李风亭.碳纳米管功能化改性的研究进展[J].低碳化学与化工,2024,49(10):1-10.
YAN Jiangyi,DING Yihui,LI Fengting.Research progress on functional modification of carbon nanotubes[J].Low-carbon Chemistry and Chemical Engineering,2024,49(10):1-10.
闫江毅,丁一汇,李风亭.碳纳米管功能化改性的研究进展[J].低碳化学与化工,2024,49(10):1-10. DOI: 10.12434/j.issn.2097-2547.20230400.
YAN Jiangyi,DING Yihui,LI Fengting.Research progress on functional modification of carbon nanotubes[J].Low-carbon Chemistry and Chemical Engineering,2024,49(10):1-10. DOI: 10.12434/j.issn.2097-2547.20230400.
碳纳米管(CNTs)因具有理想的原子空间几何结构、高电子迁移率和卓越的纳米级尺寸效应自被发现以来即成为了纳米科技领域的研究热点。研究人员对碳纳米管的理论模型进行了深入的研究,通过实验探索了其结构、力学性质以及电子结构等。由于碳纳米管在生长过程中受到动力学和热力学等不确定性因素的影响,通常会被引入不同类型的缺陷,因此对碳纳米管进行功能化改性成为克服其局限性的主要途径。通过归纳国内外报道的碳纳米管改性的研究成果,从碳纳米管的结构特性、功能化方法、接枝基团以及受控体系下不同功能选择剂对碳纳米管活性的促进作用等方面进行了阐述和分析。分析认为,依托碳纳米管特定的骨架结构,功能性基团或材料的引入能够显著地影响碳纳米管的物理化学性质和表面活性,并推动其在更广泛领域中的应用。今后,实现超纯碳纳米管的高产率制备和高功能化修饰是需要重点关注的方向。
Carbon nanotubes (CNTs) have been a research interest in the field of nanotechnology since their discovery due to their ideal atomic space geometry
high electron mobility and excellent nanoscale size effect. Researchers have conducted in-depth researches on the theoretical model of carbon nanotubes and explored their structures
mechanical properties and electronic structures through experiments. Different kinds of defects are typically introduced during the growing process of carbon nanotubes since they are subject to uncertain factors including kinetics and thermodynamics
and thus functional modification of carbon nanotubes has become a major way to overcome their limitations. By summarizing the studies on modification of carbon nanotubes reported at home and abroad
the structural properties of carbon nanotubes
functionalization methods
grafting groups
and the promotion on the activity of carbon nanotubes by different functional selective agents in a controlled system were elaborated and analyzed. The results show that relying on specific backbone structure of carbon nanotubes
the introduction of functional groups or materials can significantly affect the physicochemical properties and surface activities of carbon nanotubes and promote their applications in a wider range of fields. In the future
achieving high-yield preparation and highly functional modification of ultrapure carbon nanotubes are directions that needs to be focused on.
碳纳米管结构特性可控修饰功能化改性
carbon nanotubesstructural characteristiccontrolled modificationfunctional modification
GUPTA N, GUPTA S M, SHARMA S K. Carbon nanotubes: Synthesis, properties and engineering applications [J]. Carbon Letters, 2019, 29(5): 419-447.
TANG D M, EROHIN S V, KVASHNIN D G, et al. Semiconductor nanochannels in metallic carbon nanotubes by thermomechanical chirality alteration [J]. Science, 2021, 374(6575): 1616-1620.
张文治, 坚增运, 王素敏, 等. 非共价键法改性碳纳米管的研究进展[J]. 高分子通报, 2014, (6): 6-15.
ZHANG W Z, JIAN Z Y, WANG S M, et al. Research progress on noncovalent functionalization of carbon nanotubes [J]. Polymer Bulletin, 2014, (6): 6-15.
樊英鸽. 碳纳米管的化学修饰及其对银离子吸附性能的研究[J]. 陶瓷, 2017, (3): 26-29.
FAN Y G. A study on chemical modification of carbon nanotubes and its adsorption removal performance for Ag+ [J]. Ceramics, 2017, (3): 26-29.
LIU B L, WU F Q, GUI H, et al. Chirality-controlled synthesis and applications of single-wall carbon nanotubes [J]. ACS Nano, 2017, 11(1): 31-53.
SU D S, PERATHONER S, CRNTI G. Nanocarbons for the development of advanced catalysts [J]. Chemical Reviews, 2013, 113(8): 5782-5816.
KHARLANOVA M V, BURDANOVA M G, PAUKOV M I, et al. Synthesis, sorting, and applications of single-chirality single-walled carbon nanotubes [J]. Materials, 2022, 15(17): 5898.
ZHANG L L, XU Z W, FENG T L, et al. Breaking the axis‐symmetry of a single-wall carbon nanotube during its growth [J]. Advanced Science, 2023, 10(36): 2304905.
HE M S, MAGNIN Y, JIANG H, et al. Growth modes and chiral selectivity of single-walled carbon nanotubes [J]. Nanoscale, 2018, 10(14): 6744-6750.
XU B, KANRKO T, SHIBUTA Y, et al. Preferential synthesis of (6,4) single-walled carbon nanotubes by controlling oxidation degree of Co catalyst [J]. Scientific Reports, 2017, 7(1): 11149.
LIM H E, MIYATA Y, KITAURA R, et al. Growth of carbon nanotubes via twisted graphene nanoribbons [J]. Nature Communications, 2013, 4(1): 2548.
HOSSEINZADEH M, NIKJOO S, ZARE N, et al. Characterization of the structural changes of human serum albumin upon interaction with single-walled and multi-walled carbon nanotubes: Spectroscopic and molecular modeling approaches [J]. Research on Chemical Intermediates, 2019, 45: 401-423.
LI J, LIANG Y, LIAO Q, et al. Comparison of the electrocatalytic performance of PtRu nanoparticles supported on multi-walled carbon nanotubes with different lengths and diameters [J]. Electrochimica Acta, 2009, 54(4): 1277-1285.
RAHMANI R, ANTONOV M. Axial and torsional buckling analysis of single-and multi-walled carbon nanotubes: Finite element comparison between armchair and zigzag types [J]. SN Applied Sciences, 2019, 1: 1-13.
KUKOVECZ Á, KOZMA G, KÓNYA Z. Multi-walled carbon nanotubes [J]. Springer Handbook of Nanomaterials, 2013, 5: 147-188.
MÉTÉNIER K, BONNAMY S, BÉGUIN F, et al. Coalescence of single-walled carbon nanotubes and formation of multi-walled carbon nanotubes under high-temperature treatments [J]. Carbon, 2002, 40(10): 1765-1773.
LÓPEZ M J, RUBIO A, ALONSO J A, et al. Patching and tearing single-wall carbon-nanotube ropes into multiwall carbon nanotubes [J]. Physical Review Letters, 2002, 89(25): 255501.
KHARISSOVA O V, KHARISOV B I. Variations of interlayer spacing in carbon nanotubes [J]. RSC Advances, 2014, 4(58): 30807-30815.
NASEH M V, KHODADADI A A, MORTAZAVI Y, et al. Fast and clean functionalization of carbon nanotubes by dielectric barrier discharge plasma in air compared to acid treatment [J]. Carbon, 2010, 48(5): 1369-1379.
YANG L F, SHI Z, YANG W H. Polypyrrole directly bonded to air-plasma activated carbon nanotube as electrode materials for high-performance supercapacitor [J]. Electrochimica Acta, 2015, 153: 76-82.
STEFFEN T T, FONTANA L C, HAMMER P, et al. Carbon nanotube plasma functionalization: The role of carbon nanotube/maleic anhydride solid premix [J]. Applied Surface Science, 2019, 491: 405-410.
FELTEN A, BITTENCOURT C, COLOMER J F, et al. Nucleation of metal clusters on plasma treated multi wall carbon nanotubes [J]. Carbon, 2007, 45(1): 110-116.
NASEH M V, KHODADADI A A, MORTAZAVI Y, et al. Functionalization of carbon nanotubes using nitric acid oxidation and DBD plasma [J]. International Journal of Chemical and Molecular Engineering, 2009, 3(1): 33-35.
RAIMONDO M, NADDEO C, VERTUCCIO L, et al. Multifunctionality of structural nanohybrids: The crucial role of carbon nanotube covalent and non-covalent functionalization in enabling high thermal, mechanical and self-healing performance [J]. Nanotechnology, 2020, 31(22): 225708.
HONG M S, PARK Y, KIM T, et al. Polydopamine/carbon nanotube nanocomposite coating for corrosion resistance [J]. Journal of Materiomics, 2020, 6(1): 158-166.
LIU Z, SUN X M, NAKAYAMA-RATCHFORD N, et al. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery [J]. ACS Nano, 2007, 1(1): 50-56.
GAUTAM U K, COSTA P M F J, BANDO Y, et al. Recent developments in inorganically filled carbon nanotubes: Successes and challenges [J]. Science and Technology of Advanced Materials, 2010, 11(5): 54501.
KORNEVA G, YE H, GOGOTSI Y, et al. Carbon nanotubes loaded with magnetic particles [J]. Nano Letters, 2005, 5(5): 879-884.
SEIFU D, HIJJI Y, HIRSCH G, et al. Chemical method of filling carbon nanotubes with magnetic material [J]. Journal of Magnetism and Magnetic Materials, 2008, 320(3/4): 312-315.
ANDREEV A S, KAZAKOVA М A, ISHCHENKO A V, et al. Magnetic and dielectric properties of carbon nanotubes with embedded cobalt nanoparticles [J]. Carbon, 2017, 114: 39-49.
KHARLAMOVA M V. Comparative analysis of electronic properties of tin, gallium, and bismuth chalcogenide-filled single-walled carbon nanotubes [J]. Journal of Materials Science, 2014, 49: 8402-8411.
JEON I Y, CHANG D W, KUMAR N A, et al. Functionalization of carbon nanotubes [M]//Carbon Nanotubes-Polymer Nanocomposites. IntechOpen, 2011: 91-110.
MENG L J, FU C L, LU Q H. Advanced technology for functionalization of carbon nanotubes [J]. Progress in Natural Science, 2009, 19(7): 801-810.
BAI Y, LU H Z, Ma F Z, et al. Carbon nanotube-based nanopromoters for gas hydrate formation [J]. Journal of Natural Gas Science and Engineering, 2021, 94: 104109.
JIANG M R, ZHOU H, CHENG X H. Effect of rare earth surface modification of carbon nanotubes on enhancement of interfacial bonding of carbon nanotubes reinforced epoxy matrix composites [J]. Journal of Materials Science, 2019, 54: 10235-10248.
ZHANG Z Y, XU X C. Nondestructive covalent functionalization of carbon nanotubes by selective oxidation of the original defects with K2FeO4 [J]. Applied Surface Science, 2015, 346: 520-527.
YAO X M, GAO X Y, JIANG J J, et al. Comparison of carbon nanotubes and graphene oxide coated carbon fiber for improving the interfacial properties of carbon fiber/epoxy composites [J]. Composites Part B: Engineering, 2018, 132: 170-177.
WEYDEMEYER E J, SAWDON A J, PENG C A. Controlled cutting and hydroxyl functionalization of carbon nanotubes through autoclaving and sonication in hydrogen peroxide [J]. Chemical Communications, 2015, 51(27): 5939-5942.
SEZER N, KOC M. Oxidative acid treatment of carbon nanotubes [J]. Surfaces and Interfaces, 2019, 14: 1-8.
FORREST G A, ALEXANDER A J. A model for the dependence of carbon nanotube length on acid oxidation time [J]. The Journal of Physical Chemistry C, 2007, 111(29): 10792-10798.
JUN L Y, MUBARAK N M, YON L S, et al. Comparative study of acid functionalization of carbon nanotube via ultrasonic and reflux mechanism [J]. Journal of Environmental Chemical Engineering, 2018, 6(5): 5889-5896.
ANSALONI L, ZHAO Y N, JUNG B T, et al. Facilitated transport membranes containing amino-functionalized multi-walled carbon nanotubes for high-pressure CO2 separations [J]. Journal of Membrane Science, 2015, 490: 18-28.
HADAVIFAR M, BAHRAMIFAR N, YOUNESI H, et al. Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups [J]. Chemical Engineering Journal, 2014, 237: 217-228.
WANG S H, LI S S, HOU C Y, et al. Functionalization of multiwalled carbon nanotubes by amidation and Michael addition reactions and the effect of the functional chains on the properties of waterborne polyurethane composites [J]. Journal of Applied Polymer Science, 2018, 135(42): 46757.
AHAMAD T, NAUSHAD M, ELDESOKY G E, et al. Effective and fast adsorptive removal of toxic cationic dye (MB) from aqueous medium using amino-functionalized magnetic multiwall carbon nanotubes [J]. Journal of Molecular Liquids, 2019, 282: 154-161.
SAEB M R, NAJAFI F, BAKHSHANDEH E, et al. Highly curable epoxy/MWCNTs nanocomposites: An effective approach to functionalization of carbon nanotubes [J]. Chemical Engineering Journal, 2015, 259: 117-125.
下转第19页)
LI J C, HOU P X, LIU C. Heteroatom-doped carbon nanotube and graphene-based electrocatalysts for oxygen reduction reaction [J]. Small, 2017, 13(45): 1702002.
GONG K P, DU F, XIA Z H, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction [J]. Science, 2009, 323(5915): 760-764.
MA W J, WANG N, FAN Y N, et al. Non-radical-dominated catalytic degradation of bisphenol A by ZIF-67 derived nitrogen-doped carbon nanotubes frameworks in the presence of peroxymonosulfate [J]. Chemical Engineering Journal, 2018, 336: 721-731.
YEH M H, LEU Y A, CHIANG W H, et al. Boron-doped carbon nanotubes as metal-free electrocatalyst for dye-sensitized solar cells: Heteroatom doping level effect on tri-iodide reduction reaction [J]. Journal of Power Sources, 2018, 375: 29-36.
XIAO F, CHEN Z M, WU H, et al. Phytic acid-guided ultra-thin N,P co-doped carbon coated carbon nanotubes for efficient all-pH electrocatalytic hydrogen evolution [J]. Nanoscale, 2019, 11(47): 23027-23034.
XIA B Y, YAN Y, LI N, et al. A metal-organic framework-derived bifunctional oxygen electrocatalyst [J]. Nature Energy, 2016, 1(1): 1-8.
DENG H J, LI Q, LIU J J, et al. Active sites for oxygen reduction reaction on nitrogen-doped carbon nanotubes derived from polyaniline [J]. Carbon, 2017, 112: 219-229.
AHMAD M S, CHENG C K, KUMAR R, et al. Pd/CNT catalysts for glycerol electro-oxidation: Effect of Pd loading on production of valuable chemical products [J]. Electroanalysis, 2020, 32(6): 1139-1147.
SUN J T, DOU M L, ZHANG Z P, et al. Carbon nanotubes supported Pt-Co-P ultrafine nanoparticle electrocatalysts with superior activity and stability for methanol electro-oxidation [J]. Electrochimica Acta, 2016, 215: 447-454.
VAN STEEN E, PRINSLOO F F. Comparison of preparation methods for carbon nanotubes supported iron Fischer-Tropsch catalysts [J]. Catalysis Today, 2002, 71(3/4): 327-334.
OMBAKA L M, NDUNGU P, NYAMORI V O. Usage of carbon nanotubes as platinum and nickel catalyst support in dehydrogenation reactions [J]. Catalysis Today, 2013, 217: 65-75.
SHI W, WU K H, XU J Y, et al. Enhanced stability of immobilized platinum nanoparticles through nitrogen heteroatoms on doped carbon supports [J]. Chemistry of Materials, 2017, 29(20): 8670-8678.
VANYOREK L, PREKOB A, HAJDU V, et al. Ultrasonic cavitation assisted deposition of catalytically active metals on nitrogen-doped and non-doped carbon nanotubes—A comparative study [J]. Journal of Materials Research and Technology, 2020, 9(3): 4283-4291.
CHEN S M, SHEN W M, WU G Z, et al. A new approach to the functionalization of single-walled carbon nanotubes with both alkyl and carboxyl groups [J]. Chemical Physics Letters, 2005, 402(4/5/6): 312-317.
WEYDEMEYER E J, SAWDON A J, PENG C A. Controlled cutting and hydroxyl functionalization of carbon nanotubes through autoclaving and sonication in hydrogen peroxide [J]. Chemical Communications, 2015, 51(27): 5939-5942.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构