浏览全部资源
扫码关注微信
1.大连理工大学 化工学院 化工机械与安全系,辽宁 大连 116012
2.国家管网集团工程技术创新有限公司,天津 300450
3.大连理工大学 精细化工国家重点实验室,智能材料化工前沿科学中心,辽宁 大连 116012
蔡东旭(1998—),硕士研究生,研究方向为LNG冷能发电工艺技术,E-mail:1604054161@qq.com。
胡大鹏(1963—),博士,教授,博士研究生导师,研究方向为过程装备制造、制冷技术和LNG冷能回收利用等,E-mail:hudp@dlut.edu.cn。
纸质出版日期:2024-11-25,
收稿日期:2023-12-03,
修回日期:2024-01-19,
移动端阅览
蔡东旭,王荧光,刘豪爽等.改进型三级串联多股流LNG冷能发电系统性能研究[J].低碳化学与化工,2024,49(11):122-132.
CAI Dongxu,WANG Yingguang,LIU Haoshuang,et al.Study on performance of improved three-stage cascade multi-stream system for LNG cold energy power generation[J].Low-carbon Chemistry and Chemical Engineering,2024,49(11):122-132.
蔡东旭,王荧光,刘豪爽等.改进型三级串联多股流LNG冷能发电系统性能研究[J].低碳化学与化工,2024,49(11):122-132. DOI: 10.12434/j.issn.2097-2547.20230394.
CAI Dongxu,WANG Yingguang,LIU Haoshuang,et al.Study on performance of improved three-stage cascade multi-stream system for LNG cold energy power generation[J].Low-carbon Chemistry and Chemical Engineering,2024,49(11):122-132. DOI: 10.12434/j.issn.2097-2547.20230394.
针对常见的三级串联朗肯循环液化天然气(LNG)冷能发电系统未能有效地利用工质冷量的问题,提出了一种改进型三级串联多股流联合循环(MS-3CC)系统。通过加入多股流换热器,该系统多级利用了LNG和系统内循环工质冷量,有效降低了系统复杂程度,提升了系统热力学性能和经济性。通过遗传算法优化计算,当天然气(NG)排气压力为5.5 MPa、系统内各级循环工质均选取丙烷时,MS-3CC系统的最大净输出功为6027 kW,相比三级串并联合循环(P-3CC)系统和单级联合循环(SCC)系统分别提高了5.4%和80
.3%
,
而其年净收益则分别提高了16.9%和68.0%。比较了64种工质组合,发现采用CH
2
F
2
+ CH
2
F
2
+ C
3
H
8
时MS-3CC系统的净输出功最高。MS-3CC系统的提出为实际工业中更为有效地多级利用LNG冷量提供了参考。
The conventional three-stage cascade Rankine cycle system for liquefie natural gas (LNG) cold energy power generation fails to effectively utilize the working fluid’s cold energy
therefore an improved multi-stream three-stage cascade combined cycle (MS-3CC) system was proposed. By adding a multi-stream heat exchanger
the system can utilize the cold energy of LNG and working fluid in multiple stages
effectively reducing the complexity of the system and improving its thermodynamic performance and economy. Through genetic algorithm optimization calculation
when the exhaust pressure of natural gas (NG) is 5.5 MPa
and the working fluid is selected as propane in all syetems
the maximum net output power of the MS-3CC system is 6027 kW
which is 5.4% and 80.3% higher than that of the parallel three-stage cascade combined cycle (P-3CC) system and single-stage combined cycle (SCC) system
respectively
and its annual total net income increases by 16.9% and 68.0%
respectively. Comparing 64 working fluid combinations
it is found that the net output power of the MS-3CC system is highest when using CH
2
F
2
+ CH
2
F
2
+ C
3
H
8
. The proposal of MS-3CC system provides a reference for more effective multi-stage utilization of LNG cold energy in industrial practice.
LNG冷能发电三级朗肯循环多股流换热经济性分析工质选择遗传算法
LNG cold energy power generationthree-stage Rankine cyclemulti-stream heat exchangeeconomic analysisworking fluid selectiongenetic algorithm
JOY J, KOCHUNNI S K, CHOWDHURY K. Size reduction and enhanced power generation in ORC by vaporizing LNG at high supercritical pressure irrespective of delivery pressure [J]. Energy, 2022, 260: 124922.
PAN J, LI M F, LI R, et al. Design and analysis of LNG cold energy cascade utilization system integrating light hydrocarbon separation, organic Rankine cycle and direct cooling [J]. Applied Thermal Engineering, 2022, 213: 118672.
OUYANG T C, TAN J Q, WU W C, et al. Energy, exergy and economic benefits deriving from LNG-fired power plant: Cold energy power generation combined with carbon dioxide capture [J]. Renewable Energy, 2022, 195: 214-229.
XUE X D, GUO C, DU X Z, et al. Thermodynamic analysis and optimization of a two-stage organic Rankine cycle for liquefied natural gas cryogenic exergy recovery [J]. Energy, 2015, 83: 778-787.
HAN H, WANG Z H, WANG C, et al. The study of a novel two-stage combined rankine cycle utilizing cold energy of liquefied natural gas [J]. Energy, 2019, 189: 116290.
杨红昌, 鹿院卫, 马重芳, 等. LNG冷能梯级利用系统优化研究[J]. 可再生能源, 2011, 29(1): 72-75+80.
YANG H C, LU Y W, MA C F, et al. Optimization study on the cascade utilization of LNG cold energy [J].Renewable Energy Resources, 2011, 29(1): 72-75+80.
曹健, 冯新, 吉晓燕, 等. 基于混合工质的多级蒸发ORC理论极限性能研究[J]. 化工学报, 2021, 72(7): 3780-3787.
CAO J, FENG X, JI X Y, et al. Study on the theoretical limit performance of multi-pressure evaporation ORC based on zeotropic mixture [J]. CIESC Journal, 2021, 72(7): 3780-3787.
乔焱, 姜文全, 杨帆, 等. 一种冷热电联供和CO2捕集的联合动力循环[J]. 化学工程, 2023, 51(2): 46-50.
QIAO Y, JIANG W Q, YANG F, et al. A combined power cycle of cold, heat and electricity and CO2 capture [J]. Chemical Engineering, 2023, 51(2): 46-50.
李宪昭, 田静怡, 逯国英, 等. 基于朗肯循环液化天然气冷能利用[J]. 当代化工, 2022, 51(10): 2459-2462.
LI X Z, TIAN J Y, LU G Y, et al. Cold energy utilization of liquefied natural gas based on Rankine cycle [J]. Contemporary Chemical Industry, 2022, 51(10): 2459-2462.
王峰, 孙志新, 许福泉, 等. 以LNG为冷源的跨临界有机工质联合循环发电系统工质选择与参数分析[J]. 福州大学学报(自然科学版), 2017, 45(5): 699-705.
WANG F, SUN Z X, XU F Q, et al. Working fluid selection and parameter analysis of combined transcritical power generation system using LNG as the cold source [J]. Journal of Fuzhou University (Natural Science Edition), 2017, 45(5): 699-705.
CHEN K, YU H B, FAN G, et al. Multi-objective optimization of a novel combined parallel power generation system using CO2 and N2 for cascade recovery of LNG cryogenic energy [J]. Energy Conversion and Management, 2022, 256: 115395.
宁静红, 王宁霞, 王润霞. 基于LNG冷能与太阳能驱动的ORC系统性能分析[J]. 低碳化学与化工, 2023, 48(2): 168-173.
NING J H, WANG N X, WANG R X. Performance analysis of ORC system based on LNG cold energy and solar energy drive [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(2): 168-173.
郭媛媛, 潘振, 韦丽娃, 等. 利用LNG冷能的三级发电系统工质筛选及优化[J]. 天然气化工—C1化学与化工, 2021, 46(5): 88-95.
GUO Y Y, PAN Z, WEI L W, et al. Working fluid combination selection and optimization for three-stage power generation system using LNG cold energy [J]. Natural Gas Chemical Industry, 2021, 46(5): 88-95.
QU Z G, BAI Y H, PU L. One-dimensional numerical study of thermal performance of an organic Rankine cycle system using liquefied natural gas as a cold source for cold energy recovery [J]. Journal of Natural Gas Science and Engineering, 2015, 26: 1399-1413.
ALESSANDRO F, CLAUDIO C. Thermodynamic analysis of direct expansion configurations for electricity production by LNG cold energy recovery [J]. Applied Thermal Engineering, 2015, 78: 649-657.
BAO J J, LIN Y, ZHANG R X, et al. Strengthening power generation efficiency utilizing liquefied natural gas cold energy by a novel two-stage condensation Rankine cycle (TCRC) system [J]. Energy Conversion and Management, 2017, 143: 312-325.
BAO J J, LIN Y, ZHANG R X, et al. Effects of stage number of condensing process on the power generation systems for LNG cold energy recovery [J]. Applied Thermal Engineering, 2017, 126: 566-582.
HAN F H, WANG Z, JI Y L, et al. Energy analysis and multi-objective optimization of waste heat and cold energy recovery process in LNG-fueled vessels based on a triple organic Rankine cycle [J]. Energy Conversion and Management, 2019, 195: 561-572.
LU B T, WANG K S. Analysis and optimization of a cascading power cycle with liquefied natural gas (LNG) cold energy recovery [J]. Applied Thermal Engineering, 2009, 29: 1478-1484.
HAMED H, MOHAMMAD Z, ATA C, et al. Thermo-economic analysis and optimization of combined PERC-ORC-LNG power system for diesel engine waste heat recovery [J]. Energy Conversion and Management, 2018, 173: 613-625.
SUN Z X, LAI J P, WANG S J, et al. Thermodynamic optimization and comparative study of different ORC configurations utilizing the exergies of LNG and low grade heat of different temperatures [J]. Energy, 2018, 147: 688-700.
CHEDDIE D F, MURRAY R. Thermo-economic modeling of a solid oxide fuel cell/gas turbine power plant with semi-direct coupling and anode recycling [J]. International Journal of Hydrogen Energy, 2010, 35(20): 11208-11215.
XU G, LIANG F F, YANG Y P, et al. An improved CO2 separation and purification system based on cryogenic separation and distillation theory [J]. Energies, 2014, 7(5): 3484-3502.
AMINYAVARI M, NAJAFI B, SHIRAZI A, et al. Exergetic, economic and environmental (3E) analyses, and multi-objective optimization of a CO2/NH3 cascade refrigeration system [J]. Applied Thermal Engineering, 2014, 65(1/2): 42-50.
BAGHERNEJAD A, YAGHOUBI M. Exergoeconomic analysis and optimization of an Integrated Solar Combined Cycle System (ISCCS) using genetic algorithm [J]. Energy Conversion and Management, 2011, 52(5): 2193-2203.
BEJAN A, TSATSARONIS G, MORAN M J. Thermal design and optimization [M]. New York: Wiley, 1996: 374-383.
MOSAFFA A H, FARSHI L G. Exergoeconomic and environmental analyses of an air conditioning system using thermal energy storage [J]. Applied Energy, 2016, 162: 515-526.
MOSAFFA A H, MOKARRAM N H, FARSHI L G. Thermo-economic analysis of combined different ORCs geothermal power plants and LNG cold energy [J]. Geothermics, 2017, 65: 113-125.
田彩霞. 中山某工业园蓄冷空调系统运行经济性分析[J]. 广东土木与建筑, 2023, 370(12): 40-43.
TIAN C X. Analysis of the operation economy of the cold storage air conditioning system in an industrial park in zhongshan [J]. Guangdong Architecture Civil Engineering, 2023, 370(12): 40-43.
BAO J J, LIN Y, ZHANG R X, et al. Performance enhancement of two-stage condensation combined cycle for LNG cold energy recovery using zeotropic mixtures [J]. Energy, 2018, 157: 588-598.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构