浏览全部资源
扫码关注微信
东华大学 环境科学与工程学院,上海 201600
高云芳(2000—),硕士研究生,研究方向为CO2捕集,E-mail:2222339@mail.dhu.edu.cn。
宋新山(1972—),博士,教授,博士研究生导师,研究方向为环境科学与工程,E-mail:newmountain@dhu.edu.cn。
纸质出版日期:2024-11-25,
收稿日期:2023-11-17,
修回日期:2023-12-19,
移动端阅览
高云芳,宋新山.季铵基吸附剂CO2变湿捕集-释放机制及相关材料研究进展[J].低碳化学与化工,2024,49(11):104-112.
GAO Yunfang,SONG Xinshan.Research progress on CO2 moisture swing capture-release mechanism of quaternary ammonium-based adsorbents and related materials[J].Low-carbon Chemistry and Chemical Engineering,2024,49(11):104-112.
高云芳,宋新山.季铵基吸附剂CO2变湿捕集-释放机制及相关材料研究进展[J].低碳化学与化工,2024,49(11):104-112. DOI: 10.12434/j.issn.2097-2547.20230373.
GAO Yunfang,SONG Xinshan.Research progress on CO2 moisture swing capture-release mechanism of quaternary ammonium-based adsorbents and related materials[J].Low-carbon Chemistry and Chemical Engineering,2024,49(11):104-112. DOI: 10.12434/j.issn.2097-2547.20230373.
变湿吸附作为一种新型的CO
2
捕集技术,具有受水分变化驱动捕集-释放CO
2
的特点,可有效降低CO
2
捕集能耗和运行成本。阐述了季铵基吸附剂的变湿吸附技术机理,以及热力学、动力学角度的作用机制;介绍了影响吸附剂性能的因素;归纳了近年来吸附剂合成改性方法及研究进展;最后总结了该领域当前面临的挑战并指出了发展趋势。季铵基吸附剂吸附CO
2
的过程通过水蒸发驱动并受水分波动影响。当吸附剂负载二价及三价酸根阴离子,亲水/疏水层间距和阳离子间距均较小时,CO
2
吸附性能较强。可通过定向调控孔隙结构制备更小粒径、更丰富孔隙度和更高比表面积的吸附剂材料。此外,可通过强化季铵化或双季铵化等手段将季铵基官能团进行化学嫁接,以提高活性位点的密度并高效利用。目前变湿吸附技术处于发展阶段,在保持吸附剂较高比表面积和官能团利用率的基础上,改善吸附容量和循环速率是面向实际应用的必然需求;其规模化应用、捕集能耗的降低、环境耐受性的提高,以及捕集后CO
2
的处理也是亟待研究的重要方向。
As a new type of CO
2
capture technology
moisture swing adsorption has the characteristics of capture-release CO
2
driven by moisture change
which can effectively reduce the energy consumption and operation cost of CO
2
capture. The mechanism of moisture swing adsorption technology of quaternary ammonium-based adsorbents and the mechanism of action from the perspective of thermodynamics and kinetics were described. The influencing factors of adsorbents performance were introduced. The synthesis and modification methods and research progress of adsorbents in recent years were summarized. Finally
the current challenges in this field were summarized and the development trend was pointed out. The process of CO
2
adsorption by quaternary ammonium-based adsorbents is driven by water evaporation and affected by moisture fluctuation. When the adsorbents are loaded with divalent and trivalent acid anions
the hydrophilic/hydrophobic layer spacing and cation spacing are small
and the CO
2
adsorption performance is strong. The adsorbent materials with smaller particle size
richer porosity and higher specific surface area can be prepared by directional regulation of pore structure. In addition
the quaternary
ammonium functional groups are chemically grafted by enhanced quaternization or biquaternization to enhance the density of active sites and efficient utilization. Moisture swing adsorption technology is currently in the development stage. On the basis of maintaining a high specific surface area and functional group utilization
improving the adsorption capacity and cycle rate is an inevitable demand for practical applications. Its large-scale application
reducing capture energy consumption
improving environmental tolerance
and the treatment of CO
2
after capture are also the key directions to be studied.
CO2捕集变湿吸附剂季铵基动力学热力学
CO2 capturemoisture swing adsorbentsquaternary ammonium-basedkineticsthermodynamics
陈依卓. 多孔复合吸附剂的制备及对空气CO2吸附分离的性能研究[D]. 杭州: 浙江大学, 2022.
CHEN Y Z. Research on preparation and performance of porous composite adsorbents for air capture of CO2 [D]. Hangzhou: Zhejiang University, 2022.
PALMER C. Mitigating climate change will depend on negative emissions technologies [J]. Engineering, 2019, 5(6): 982-984.
MINX J C, LAMB W F, CALLAGHAN M W, et al. Negative emissions: Part 1—Research iandscape and synthesis [J]. Environmental Research Letters, 2018, 13(6): 063001.
LACKNER K, ZIOCK H J, GRIMES P. Carbon dioxide extraction from air: Is it an option? [R]. Los Alamos: Los Alamos National Lab, 1999.
OZKAN M, AKHAVI A A, COLEY W C, et al. Progress in carbon dioxide capture materials for deep decarbonization [J]. Chem, 2022, 8(1): 141-173.
SUN J L, ZHAO M, HUANG L, et al. Recent progress on direct air capture of carbon dioxide [J]. Current Opinion in Green and Sustainable Chemistry, 2023, 40: 100752.
JONES C W. CO2 capture from dilute gases as a component of modern global carbon management [J]. Annual Review of Chemical and Biomolecular Engineering, 2011, 2: 31-52.
GOEPPERT A, CZAUN M, SURYA PRAKASH G K, et al. Air as the renewable carbon source of the future: An overview of CO2 capture from the atmosphere [J]. Energy & Environmental Science, 2012, 5(7): 7833-7853.
SHI X Y, XIAO H, AZARABADI H, et al. Sorbents for the direct capture of CO2 from ambient air [J]. Angewandte Chemie International Edition, 2020, 59(18): 6984-7006.
MONTEAGUDO J M, DURAN A, VALDERAS V, et al. Capture of ambient air CO2 from municipal wastewater mineralization by using an ion-exchange membrane [J]. Science of the Total Environment, 2021, 790: 148136.
DEUTZ S, BARDOW A. Life-cycle assessment of an industrial direct air capture process based on temperature-vacuum swing adsorption [J]. Nature Energy, 2021, 6(2): 203-213.
LACKNER K S. Capture of carbon dioxide from ambient air [J]. The European Physical Journal Special Topics, 2009, 176(1): 93-106.
SHI X Y. Study of a humidity-swing carbon dioxide sorbent [D]. New York: Columbia University, 2017.
WANG T, LACKNER K S, WRIGHT A. Moisture swing sorbent for carbon dioxide capture from ambient air [J]. Environmental Science & Technology, 2011, 45(15): 6670-6675.
吴禹松. 用于空气二氧化碳捕集的多孔树脂吸附剂成型及性能研究[D]. 杭州: 浙江大学, 2020.
WU Y S. Research on formation and performance of porous resin adsorbent for direct air capture of CO2 [D]. Hangzhou: Zhejiang University, 2020.
WANG T, LACKNER K S, WRIGHT A B. Moisture-swing sorption for carbon dioxide capture from ambient air: A thermodynamic analysis [J]. Physical Chemistry Chemical Physics, 2013, 15(2): 504-514.
ABD A A, OTHMAN M R, HELWANI Z, et al. Role of heat dissipation on carbon dioxide capture performance in biomethane upgrading system using pressure swing adsorption [J]. Separation and Purification Technology, 2022, 280: 119959.
张品, 段欢欢, 刘群生, 等. 吸附式制冷系统吸附床传热传质强化研究现状[J]. 制冷技术, 2021, 41(3): 12-17+36.
ZHANG P, DUAN H H, LIU Q S, et al. Research status of heat and mass transfer enhancement of adsorption bed in adsorption refrigeration system [J]. Chinese Journal of Refrigeration Technology, 2021, 41(3): 12-17+36.
WANG T, HOU C L, GE K, et al. Spontaneous cooling absorption of CO2 by a polymeric ionic liquid for direct air capture [J]. The Journal of Physical Chemistry Letters, 2017, 8(17): 3986-3990.
HOU C L, KUMAR D R, JIN Y, et al. Porosity and hydrophilicity modulated quaternary ammonium-based sorbents for CO2 capture [J]. Chemical Engineering Journal, 2021, 413: 127532.
WANG T, LIU J, LACKNER K S, et al. Characterization of kinetic limitations to atmospheric CO2 capture by solid sorbent [J]. Greenhouse Gases: Science and Technology, 2016, 6(1): 138-149.
CHOI S, DRESE J H, EISENBERGER P M, et al. Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air [J]. Environmental Science & Technology, 2011, 45(6): 2420-2427.
CHEN Z H, DENG S B, WEI H R, et al. Polyethylenimine-impregnated resin for high CO2 adsorption: An efficient adsorbent for CO2 capture from simulated flue gas and ambient air [J]. ACS Applied Materials & Interfaces, 2013, 5(15): 6937-6945.
DRESE J H, CHOI S, LIVELY R P, et al. Synthesisâ structureâ property relationships for hyperbranched aminosilica CO2 adsorbents [J]. Advanced Functional Materials, 2009, 19(23): 3821-3832.
SHI X Y, LI Q B, WANG T, et al. Kinetic analysis of an anion exchange absorbent for CO2 capture from ambient air [J]. PLoS One, 2017, 12(6): e0179828.
BRANDANI F, RUTHVEN D M. The effect of water on the adsorption of CO2 and C3H8 on type X zeolites [J]. Industrial & Engineering Chemistry Research, 2004, 43(26): 8339-8344.
LLEWELLYN P L, BOURRELLY S, SERRE C, et al. How hydration drastically improves adsorption selectivity for CO2 over CH4 in the flexible chromium terephthalate MIL-53 [J]. Angewandte Chemie International Edition, 2006, 118(46): 7751-7754.
SONG J Z, ZHU L L SHI X Y, et al. Moisture swing ion-exchange resin-PO4 sorbent for reversible CO2 capture from ambient air [J]. Energy & Fuels, 2019, 33(7): 6562-6567.
WANG T, GE K, CHEN K X, et al. Theoretical studies on CO2 capture behavior of quaternary ammonium-based polymeric ionic liquids [J]. Physical Chemistry Chemical Physics, 2016, 18(18): 13084-13091.
MAITI A, KUMAR A, ROGERS R D. Water-clustering in hygroscopic ionic liquids-an implicit solvent analysis [J]. Physical Chemistry Chemical Physics, 2012, 14(15): 5139-5146.
ZHU X, WANG Y, LI H R. The structural organization in aqueous solutions of ionic liquids [J]. AIChE Journal, 2009, 55(1): 198-205.
WANG T, GE K, WU Y S, et al. Designing moisture-swing CO2 sorbents through anion screening of polymeric ionic liquids [J]. Energy & Fuels, 2017, 31(10): 11127-11133.
QUINN R. Ion exchange resins as reversible acid gas absorbents [J]. Separation Science and Technology, 2003, 38(14): 3385-3407.
SHI X Y, XIAO H, CHEN X, et al. The effect of moisture on the hydrolysis of basic salts [J]. Chemistry, 2016, 22(51): 18326-18330.
LI R, GUAN D G, WEN M, et al. Tuning interlayer spacing of graphene oxide membrane to enhance its separation performance of hydrogen isotopic water in membrane distillation [J]. Separation and Purification Technology, 2023, 304: 122382.
CHUAH C Y, NIE L, LEE J M, et al. The influence of cations intercalated in graphene oxide membranes in tuning H2/CO2 separation performance [J]. Separation and Purification Technology, 2020, 246: 116933.
SHI X Y, XIAO H, LACKNER K S, et al. Capture CO2 from ambient air using nanoconfined ion hydration [J]. Angewandte Chemie International Edition, 2016, 55(12): 4026-4029.
SHI X Y, XIAO H, KANAMORI K, et al. Moisture-driven CO2 sorbents [J]. Joule, 2020, 4(8): 1823-1837.
ZHANG J C, FENG L J, JIAN Y P, et al. Interlayer spacing adjusted zirconium phosphate with 2D ion channels for highly efficient removal of uranium contamination in radioactive effluent [J]. Chemical Engineering Journal, 2022, 429: 132265.
LEE J, KIM C, CHEONG J Y, et al. An angstrom-level d-spacing control of graphite oxide using organofillers for high-rate lithium storage [J]. Chem, 2022, 8(9): 2393-2409.
LIU M C, ZHANG B M, ZHANG Y S, et al. Regulating interlayer spacing with pillar and strain structures in Ti3C2 MXene layers by molecular welding for superior alkali metal ion storage [J]. Materials Today Energy, 2021, 22: 100832.
WANG M Q, YAGI S. Layered birnessite MnO2 with enlarged interlayer spacing for fast Mg-ion storage [J]. Journal of Alloys and Compounds, 2020, 820: 153135.
LIANG S S, WANG S, CHEN L, et al. Controlling interlayer spacings of graphene oxide membranes with cationic for precise sieving of mono-/multi-valent ions [J]. Separation and Purification Technology, 2020, 241: 116738.
侯成龙. 季铵修饰聚合物的制备及空气二氧化碳捕集性能研究[D]. 杭州: 浙江大学, 2022.
HOU C L. Synthesis of quaternaryammonium functionalized polymers and their application in direct air capture [D]. Hangzhou: Zhejiang University, 2022.
张明杰, 张镭骞, 原思国, 等. 离子交换纤维与强酸大孔树脂对有机胺的吸附性能对比研究[J]. 离子交换与吸附, 2022, 38(1): 14-24.
ZHANG M J, ZHANG L Q, YUAN S G, et al. Comparatives study on adsorption properties of organicamines by ion exchange fiber and strong acid macroporous resin [J]. Ion Exchange and Adsorption, 2022, 38(1): 14-24.
FERNÁNDEZ-GONZÁLEZ D, RUIZ-BUSTINZA I, MOCHÓN J, et al. Iron ore sintering: Process [J]. Mineral Processing and Extractive Metallurgy Review, 2017, 38(4): 215-227.
周旭, 龚峻松, 郭强. 新型固态胺二氧化碳吸收剂的制备及性能[J]. 舰船科学技术, 2008, 30(S2): 218-222.
ZHOU X, GONG J S, GUO Q. Synthesis and performance of a novel solid amine CO2 sorbent [J]. Ship Science and Technology, 2008, 30(S2): 218-222.
VESELOVSKAYA J V, DEREVSCHIKOV V S, KARDASH T Y, et al. Direct CO2 capture from ambient air using K2CO3/Al2O3 composite sorbent [J]. International Journal of Greenhouse Gas Control, 2013, 17: 332-340.
MCDONALD T M, LEE W R, MASON J A, et al. Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc) [J]. Journal of the American Chemical Society, 2012, 134(16): 7056-7065.
GOEPPERT A, CZAUN M, MAY R B, et al. Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent [J]. Journal of the American Chemical Society, 2011, 133 50: 20164-20167.
GUO Y F, ZHAO C W, LI C H, et al. Application of PEI-K2CO3/AC for capturing CO2 from flue gas after combustion [J]. Applied Energy, 2014, 129: 17-24.
XU X C, SONG C S, ANDRÉSEN J M, et al. Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41 [J]. Microporous and Mesoporous Materials, 2003, 62(1/2): 29-45.
YANG Y, LI H C, CHEN S X, et al. Preparation and characterization of a solid amine adsorbent for capturing CO2 by grafting allylamine onto PAN fiber [J]. Langmuir, 2010, 26(17): 13897-13902.
DONG H, WANG T, WANG X B, et al. Humidity sensitivity reducing of moisture swing adsorbents by hydrophobic carrier doping for CO2 direct air capture [J]. Chemical Engineering Journal, 2023, 466: 143343.
WANG T, LIU J, HUANG H, et al. Preparation and kinetics of a heterogeneous sorbent for CO2 capture from the atmosphere [J]. Chemical Engineering Journal, 2016, 284: 679-686.
HE H K, LI W W, ZHONG M J, et al. Reversible CO2 capture with porous polymers using the humidity swing [J]. Energy & Environmental Science, 2013, 6(2): 488-493.
HE H K, ZHONG M J, KONKOLEWICZ D, et al. Carbon black functionalized with hyperbranched polymers: Synthesis, characterization, and application in reversible CO2 capture [J]. Journal of Materials Chemistry, 2013, 1(23): 6810-6821.
HE H K, ZHONG M J, KONKOLEWICZ D, et al. Three-dimensionally ordered macroporous polymeric materials by colloidal crystal templating for reversible CO2 capture [J]. Advanced Functional Materials, 2013, 23(37): 4720-4728.
HE H K, LI W W, LAMSON M, et al. Porous polymers prepared via high internal phase emulsion polymerization for reversible CO2 capture [J]. Polymer, 2014, 55(1): 385-394.
MATYJASZEWSKI K, XIA J H. Atom transfer radical polymerization [J]. Chemical Reviews, 2001, 101(9): 2921-2990.
刘军. 基于湿法再生的CO2吸附材料性能及应用研究[D]. 杭州: 浙江大学, 2017.
LIU J. Research on performance of CO2 adsorption materials and utilization based on moisture swing technology [D]. Hangzhou: Zhejiang University, 2017
FOONG S Y, CHAN Y H, YIIN C L, et al. Sustainable CO2 capture via adsorption by chitosan-based functional biomaterial: A review on recent advances, challenges, and future directions [J]. Renewable and Sustainable Energy Reviews, 2023, 181: 113342.
SONG J Z, LIU J, ZHAO W, et al. Quaternized chitosan/PVA aerogels for reversible CO2 capture from ambient air [J]. Industrial & Engineering Chemistry Research, 2018, 57(14): 4941-4948.
HOU C L, WU Y S, WANG T, et al. Preparation of quaternized bamboo cellulose and its implication in direct air capture of CO2 [J]. Energy & Fuels, 2018, 33(3): 1745-1752.
WANG T, WANG X, HOU C, et al. Quaternary functionalized mesoporous adsorbents for ultra-high kinetics of CO2 capture from air [J]. Scientific Reports, 2020, 10(1): 21429.
NICOTERA I, POLICICCHIO A, CONTE G, et al. Quaternary ammonium-functionalized polysulfone sorbent: Toward a selective and reversible trap-release of CO2 [J]. Journal of CO2 Utilization, 2022, 65: 102259.
WANG X, CHEN Y, XU W, et al. Development of high capacity moisture-swing DAC sorbent for direct air capture of CO2 [J]. Separation and Purification Technology, 2023, 324: 124489.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构