浏览全部资源
扫码关注微信
1.国家管网集团工程技术创新有限公司,天津 300450
2.大连理工大学 化工学院 化工机械与安全系, 辽宁 大连 116012
王荧光(1979—),博士,正高级工程师,研究方向为天然气处理、天然气液化和LNG接收站工艺技术,E-mail:wangyingguang7@126.com。
胡大鹏(1963—),博士,教授,博士研究生导师,研究方向为过程装备制造、制冷技术和LNG冷能回收利用等,E-mail:hudp@dlut.edu.cn。
纸质出版日期:2024-10-25,
收稿日期:2023-10-29,
修回日期:2023-12-12,
移动端阅览
王荧光,蔡东旭,梁勇等.循环工质对LNG冷能发电系统性能的影响[J].低碳化学与化工,2024,49(10):119-128.
WANG Yingguang,CAI Dongxu,LIANG Yong,et al.Effect of circulating working fluids on performance of LNG cold energy power generation systems[J].Low-carbon Chemistry and Chemical Engineering,2024,49(10):119-128.
王荧光,蔡东旭,梁勇等.循环工质对LNG冷能发电系统性能的影响[J].低碳化学与化工,2024,49(10):119-128. DOI: 10.12434/j.issn.2097-2547.20230355.
WANG Yingguang,CAI Dongxu,LIANG Yong,et al.Effect of circulating working fluids on performance of LNG cold energy power generation systems[J].Low-carbon Chemistry and Chemical Engineering,2024,49(10):119-128. DOI: 10.12434/j.issn.2097-2547.20230355.
朗肯循环可将液化天然气(LNG)冷量㶲转化为电能,是一种有效的冷能回收利用技术。结合工程实际,将LNG冷能发电系统内最低压力设置为高于常压,探究了循环工质对系统性能的影响。将7种常用工质作为备选,以系统净输出功最大为目标函数,在相同工况下对单级联合循环(CC)、串联联合循环(CCC)和并联联合循环(PCC)3种常见的LNG冷能发电系统进行了优化。分析了选择不同工质时系统性能的差异及其原因,探究了有无直接膨胀过程对工质选择的影响。结果表明,CC、CCC和PCC系统的最优工质分别为CH
2
F
2
、C
2
H
6
+ C
3
H
8
和C
2
H
4
+ C
3
H
8
。选择最优工质情况下,CCC系统通过对LNG冷能的有效分段利用,减少了系统内的不可逆㶲损失,所以性能相对最优,其热效率相比CC和PCC系统分别提升了54.8%和35.4%,且所需换热面积并未显著增加。有无直接膨胀不影响系统内工质选择,但无直接膨胀会导致最大系统净输出功略有降低。
The Rankine cycle can convert liquefied natural gas (LNG) cold energy into electrical energy
which is an effective cold energy recovery and utilization technology. Based on engineering practice
the lowest pressure in the LNG cold energy power generation system was set to be higher than normal pressure
and the effect of circulating working fluids on system performance was explored. Seven commonly used working fluids were selected as candidates
with the objective function of maximizing the net output power of the system. Under the same operating conditions
three common cold energy power generation systems
namely single-stage combined cycle (CC)
cascade combined cycle (CCC) and parallel combined cycle (PCC)
were optimized. The differences in system performance and their reasons when selecting different working fluids were analyzed
and the effect of direct expansion process on working fluid selection was explored. The results show that the optimal working fluids for CC
CCC and PCC s
ystems are CH
2
F
2
C
2
H
6
+ C
3
H
8
and C
2
H
4
+ C
3
H
8
respectively. When selecting the optimal working fluid
the CCC system reduces irreversible energy loss within the system by effectively segmenting the utilization of LNG cold energy
resulting in relatively optimal performance. Compared with CC and PCC systems
the thermal efficiency of CCC system increases by 54.8% and 35.4%
and the required heat exchange area does not significantly increase. The presence or absence of direct expansion does not affect the selection of working fluids within the system
while the absence of direct expansion can lead to a slight decrease in the maximum net output power of the system.
LNG冷能发电遗传算法优化朗肯循环工质选择系统性能对比直接膨胀
LNG cold energy power generationgenetic algorithm optimizationRankine cycleworking fluid selectionsystem performance comparisondirect expansion
PENG Y, ZHAO X Z, ZUO T L, et al. A systematic literature review on port LNG bunkering station [J]. Transportation Research Part D: Transport and Environment, 2021, 91: 102704.
AMIRANTE R, DISTASO E, DI IORIO S, et al. Effects of natural gas composition on performance and regulated, greenhouse gas and particulate emissions in spark-ignition engines [J]. Energy Conversion and Management, 2017, 143: 338-347.
KUMAR S, KWON H T, CHOI K H, et al. LNG: An eco-friendly cryogenic fuel for sustainable development [J]. Applied Energy, 2011, 88(12): 4264-4273.
TANG C L, HU F, ZHOU X G, et al. Optimization methods for flexibility and stability related to the operation of LNG receiving terminals [J]. Energy, 2022, 250: 123620.
JOY J, KOCHUNNI S K, CHOWDHURY K. Size reduction and enhanced power generation in ORC by vaporizing LNG at high supercritical pressure irrespective of delivery pressure [J]. Energy, 2022, 260: 124922.
宁静红, 王宁霞, 王润霞. 基于LNG冷能与太阳能驱动的ORC系统性能分析[J]. 低碳化学与化工, 2023, 48(2): 168-173.
NING J H, WANG N X, WANG R X. Performance analysis of ORC system based on LNG cold energy and solar energy drive [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(2): 168-173.
BARIS B K, LI MING, SWAPNIL D, et al. Cold utilization systems of LNG: A review [J]. Renewable Sustainable Energy Review, 2017, 79: 1171-1188.
PAN J, LI M F, LI R, et al. Design and analysis of LNG cold energy cascade utilization system integrating light hydrocarbon separation, organic Rankine cycle and direct cooling [J]. Applied Thermal Engineering, 2022, 213: 118672.
OUYANG T C, TAN J Q, WU W C, et al. Energy, exergy and economic benefits deriving from LNG-fired power plant: Cold energy power generation combined with carbon dioxide capture [J]. Renewable Energy, 2022, 195: 214-229.
何依, 邹斌, 张丽, 等. 基于LNG冷能的双循环-卡琳娜冷电联供系统[J]. 辽宁石油化工大学学报, 2020, 40(1): 43-51.
HE Y, ZOU B, ZHANG L, et al. Dual-loop cycle-Kalina combined cooling and power generation system based on LNG cold energy [J]. Journal of Liaoning University of Petroleum and Chemical Technology, 2020, 40(1): 43-51.
SADAGHIANI M S, AHMADI M H, MEHRPOOYA M, et al. Process development and thermodynamic analysis of a novel power generation plant driven by geothermal energy with liquefied natural gas as its heat sink [J]. Applied Thermal Engineering, 2018, 133: 645-658
LI C H, LIU J W, ZHENG S Y, et al. Performance analysis of an improved power generation system utilizing the cold energy of LNG and solar energy [J]. Applied Thermal Engineering, 2019, 159: 113937.
LI B, WANG S S. Thermo-economic analysis and optimization of a cascade transcritical carbon dioxide cycle driven by the waste heat of gas turbine and cold energy of liquefied natural gas [J]. Applied Thermal Engineering, 2022, 214: 118861.
MA J, SONG X D, ZHANG B, et al. Optimal design of dual-stage combined cycles to recover LNG cold energy and low-temperature waste thermal energy for sustainable power generation [J]. Energy Conversion and Management, 2022, 269: 116141.
王峰, 孙志新, 许福泉, 等. 以LNG为冷源的跨临界有机工质联合循环发电系统工质选择与参数分析[J]. 福州大学学报(自然科学版), 2017, 45(5): 699-705.
WANG F, SUN Z X, XU F Q, et al. Working fluid selection and parameter analysis of combined transcritical power generation system using LNG as the cold source [J]. Journal of Fuzhou University (Natural Science Edition), 2017, 45(5): 699-705.
张磊, 高为, 余黎明, 等. LNG冷能发电朗肯循环工质研究[J]. 低温与超导, 2015, 43(2): 51-54+83.
ZHANG L, GAO W, YU L M, et al. LNG cold energy generation Rankine cycle working fluid research [J]. Cryogenics and Superconductivity, 2015, 43(2): 51-54+83.
李宪昭, 田静怡, 逯国英, 等. 基于朗肯循环液化天然气冷能利用[J]. 当代化工, 2022, 51(10): 2459-2462.
LI Z X, TIAN J Y, LU G Y, et al. Cold energy utilization of liquefied natural gas based on Rankine cycle [J]. Contemporary Chemical Industry, 2022, 51(10): 2459-2462.
CHEN K, YU H B, FAN G, et al. Multi-objective optimization of a novel combined parallel power generation system using CO2 and N2 for cascade recovery of LNG cryogenic energy [J]. Energy Conversion and Management, 2022, 256: 115395.
ZHANG M G, ZHAO L J, LIU C, et al. A combined system utilizing LNG and low-temperature waste heat energy [J]. Applied Thermal Engineering, 2016, 101: 525-536.
LEE U, MITSOS A. Optimal multicomponent working fluid of organic Rankine cycle for exergy transfer from liquefied natural gas regasification [J]. Energy, 2017, 127: 489-501.
QU Z G, BAI Y H, PU L. One-dimensional numerical study of thermal performance of an organic Rankine cycle system using liquefied natural gas as a cold source for cold energy recovery [J]. Journal of Natural Gas Science and Engineering, 2015, 26: 1399-1413.
FRANCO A, CASAROSA C. Thermodynamic analysis of direct expansion configurations for electricity production by LNG cold energy recovery [J]. Applied Thermal Engineering, 2015, 78: 649-657.
下转第135页)
黄仁龙, 罗向龙, 梁志辉, 等. 基于分液冷凝的R245fa/pentane混合工质朗肯循环多目标优化[J]. 化工学报, 2018, 69(5): 2040-2048..
HUANG R L, LUO X L, LIANG Z H, et al. Multi-objective optimization of Rankine cycle using R245fa/pentane based on liquid-vapor separation [J]. Journal of Chemical Engineering, 2018, 69(5): 2040-2048.
BAO J J, LIN Y, ZHANG R X, et al. Strengthening power generation efficiency utilizing liquefied natural gas cold energy by a novel two-stage condensation Rankine cycle (TCRC) system [J]. Energy Conversion and Management, 2017, 143: 312-325.
SUN Z X, ZHAO Q, WU Z Q, et al. Thermodynamic comparison of modified Rankine cycle configurations for LNG cold energy recovery under different working conditions [J]. Energy Conversion and Management, 2021, 239: 114141.
HAN F H, WANG Z, JI Y L, et al. Energy analysis and multi-objective optimization of waste heat and cold energy recovery process in LNG-fueled vessels based on a triple organic Rankine cycle [J]. Energy Conversion and Management, 2019, 195: 561-572.
LU T, WANG K S. Analysis and optimization of a cascading power cycle with liquefied natural gas (LNG) cold energy recovery [J]. Applied Thermal Engineering, 2009, 29(8/9): 1478-1484.
SHI X J, CHE D F. A combined power cycle utilizing low-temperature waste heat and LNG cold energy [J]. Energy Conversion and Management, 2009, 50(3): 567-575.
HABIBI H, ZOGHI M, CHITSAZ A, et al. Thermo-economic analysis and optimization of combined PERC-ORC-LNG power system for diesel engine waste heat recovery [J]. Energy Conversion and Management, 2018, 173: 613-625.
SUN Z X, LAI J P, WANG S J, et al. Thermodynamic optimization and comparative study of different ORC configurations utilizing the exergies of LNG and low grade heat of different temperatures [J]. Energy, 2018, 147: 688-700.
Aspen. Aspen HYSYS V12.0.2020 [ EB/OL ]. https://www.aspentech.com/https://www.aspentech.com/.
XI H, LI M J, XU C, et al. Parametric optimization of regenerative organic Rankine cycle (ORC) for low grade waste heat recovery using genetic algorithm [J]. Energy, 2013, 58: 473-482.
BAO J J, LIN Y, ZHANG R X, et al. Performance enhancement of two-stage condensation combined cycle for LNG cold energy recovery using zeotropic mixtures [J]. Energy, 2018, 157: 588-598.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构