浏览全部资源
扫码关注微信
河北科技大学 化学与制药工程学院,河北 石家庄 050018
田贺丽(1999—),硕士研究生,研究方向为相变吸收剂,E-mail:tianheli0223@163.com。
李昆杰(1982—),博士,副教授,研究方向为CO2捕集和利用,E-mail:15830158860@163.com;
赵瑞红(1969—),博士,教授,研究方向为双碳规划和低碳技术,E-mail:2002b0208@163.com。
纸质出版日期:2024-10-25,
收稿日期:2023-10-10,
修回日期:2023-11-14,
移动端阅览
田贺丽,李昆杰,赵瑞红等.密度泛函理论用于新型相变吸收剂机理研究的进展分析[J].低碳化学与化工,2024,49(10):92-102.
TIAN Heli,LI Kunjie,ZHAO Ruihong,et al.Progress analysis of density functional theory in mechanistic research of novel phase change absorbents[J].Low-carbon Chemistry and Chemical Engineering,2024,49(10):92-102.
田贺丽,李昆杰,赵瑞红等.密度泛函理论用于新型相变吸收剂机理研究的进展分析[J].低碳化学与化工,2024,49(10):92-102. DOI: 10.12434/j.issn.2097-2547.20230337.
TIAN Heli,LI Kunjie,ZHAO Ruihong,et al.Progress analysis of density functional theory in mechanistic research of novel phase change absorbents[J].Low-carbon Chemistry and Chemical Engineering,2024,49(10):92-102. DOI: 10.12434/j.issn.2097-2547.20230337.
相变吸收剂由于在降低再生能耗方面具有优异的性能而受到了广泛关注。密度泛函理论已被广泛用于分析相变吸收体系的吸收、解吸等性能,并为反应过程和相变现象提供了有效的解释,但目前尚无对由密度泛函理论得到的氢键、偶极矩、反应能垒和电子云密度在相变吸收体系中相关应用的系统介绍。简述了相变吸收剂的吸收、相变及解吸机理,从氢键、偶极矩、反应能垒和电子云密度4个方面综述了密度泛函理论在新型相变吸收剂中应用的最新研究进展并进行了总结。针对密度泛函理论在现有应用中存在的不足提出了改进方法,并建议构建计算结果与吸收性能的关联模型,以指导相变吸收剂的设计。
The phase change absorbents have received a lot of research attentions because of their excellent ability to reduce the energy consumption during regeneration. Density functional theory has been widely used to calculate the absorption and desorption performances of phase change absorption system
which provides an effective explanation for the reaction process and phase change phenomenon. However
there is currently no systematic introduction about the application of hydrogen bond
dipole moment
reaction energy barrier and electron cloud density obtained by density functional theory in phase change absorption systems. The absorption mechanism
phase change mechanism and desorption mechanism of phase change absorbents were briefly described. The latest research progress of density functional theory applied to novel phase change absorbents was systematically reviewed from four aspects: hydrogen bond
dipole moment
reaction energy barrier and electron cloud density. Improved methods were proposed to address the shortcomings of density functional theory in existing applications
and building a correlation model between calculation results and absorption performance was also recommended to guide the design of phase change absorbents.
CO2相变吸收密度泛函理论反应机理量子化学
CO2phase changeabsorptiondensity functional theoryreaction mechanismquantum chemistry
SAMBO C, LIU N, SHAIBU R, et al. A technical review of CO2 for enhanced oil recovery in unconventional oil reservoirs [J]. Geoenergy Science and Engineering, 2023, 221: 111185.
LIN B Q, XU B. How does fossil energy abundance affect China’s economic growth and CO2 emissions? [J]. Science of the Total Environment, 2020, 719: 137503.
GENG Y Q, GUO Y X, FAN B, et al. Research progress of calcium-based adsorbents for CO2 capture and anti-sintering modification [J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 998-1013.
ZHAO X, MA X W, CHEN B Y, et al. Challenges toward carbon neutrality in China: Strategies and countermeasures [J]. Resources Conservation & Recycling, 2022, 176: 105959.
王玥. CCUS助力全球加快脱碳步伐[N]. 中国石油报, 2023-04-25(8).
WANG Y. CCUS helps accelerate global decarbonization [N]. China Petroleum News, 2023-04-25(8).
AKINOLA T E, OKO E, WU X, et al. Nonlinear model predictive control (NMPC) of the solvent-based post-combustion CO2 capture process [J]. Energy, 2020, 213: 118840.
KRISHNAMURTHY S, LIND A, BOUZGA A, et al. Post combustion carbon capture with supported amine sorbents: From adsorbent characterization to process simulation and optimization [J]. Chemical Engineering Journal, 2021, 406: 127121.
YANG F, MEERMAN J C, FAAIJ A P C. Carbon capture and biomass in industry: A techno-economic analysis and comparison of negative emission options [J]. Renewable and Sustainable Energy Reviews, 2021, 144: 111028.
MONDAL M K, BALSORA H K, VARSHNEY P. Progress and trends in CO2 capture/separation technologies: A review [J]. Energy, 2012, 46(1): 431-441.
ZHOU X B, JING G H, LV B H, et al. Low-viscosity and efficient regeneration of carbon dioxide capture using a biphasic solvent regulated by 2-amino-2-methyl-1-propanol [J]. Applied Energy, 2019, 235: 379-390.
XU Z C, WANG S J, CHEN C H. CO2 absorption by biphasic solvents: Mixtures of 1,4-butanediamine and 2-(diethylamino)-ethanol [J]. International Journal of Greenhouse Gas Control, 2013, 16: 107-115.
PINTO D D D, ZAIDY S A H, HARTONO A, et al. Evaluation of a phase change solvent for CO2 capture: Absorption and desorption tests [J]. International Journal of Greenhouse Gas Control, 2014, 28: 318-327.
HUANG Q S, JING G H, ZHOU X B, et al. A novel biphasic solvent of amino-functionalized ionic liquid for CO2 capture: High efficiency and regenerability [J]. Journal of CO2 Utilization, 2018, 25: 22-30.
ZHAO X M, LI X Y, LIU C J, et al. The quasi-activity coefficients of non-electrolytes in aqueous solution with organic ions and its application on the phase splitting behaviors prediction for CO2 absorption [J]. Chinese Journal of Chemical Engineering, 2022, 43: 316-323.
周小斌, 荆国华, 周作明, 等. 2-氨基-2-甲基-1-丙醇(AMP)活化相变吸收剂捕集CO2特性[C]//2017中国环境科学学会科学与技术年会论文集(第四卷). 厦门: 华侨大学化工学院, 2017: 876-883.
ZHOU X B, JING G H, ZHOU Z M, et al. CO2 capture into the biphasic solvent activated by 2-amino-2-methyl-1-propanol (AMP) [C]//Proceedings of 2017 Annual Conference on Science and Technology of the Chinese Society for Environmental Sciences (Volume IV). Xiamen: School of Chemical Engineering, Huaqiao University, 2017: 876-883.
LI X S, LIU J, JIANG W F, et al. Low energy-consuming CO2 capture by phase change absorbents of amine/alcohol/H2O [J]. Separation and Purification Technology, 2021, 275: 119181.
WANG C, KONG W X, DONG Z F, et al. Alcohol regulated phase change absorbent for efficient carbon dioxide capture: Mechanism and energy consumption [J]. Journal of Environmental Sciences, 2023.
杨菲, 刘苗苗, 陆诗建, 等. 适用于烟气CO2捕集的相变吸收剂研究进展[J]. 低碳化学与化工, 2023, 48(2): 113-120.
YANG F, LIU M M, LU S J, et al. Research progress of phase change absorbents for CO2 capture in flue gas [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(2): 113-120.
刘大李, 王聪, 刘新伟, 等. 用于二氧化碳捕集的化学吸收剂研究进展[J]. 低碳化学与化工, 2024, 49(1): 94-104+112.
LIU D L, WANG C, LIU X W, et al. Research advances in chemical absorbents for carbon dioxide capture [J]. Low-Carbon Chemistry and Chemical Engineering, 2024, 49(1): 94-104+112.
CHEN M, LUO Q, LIN H, et al. A study on reaction mechanism and kinetics of CO2 and MEA/DEA-tertiary amines in non-aqueous and water-lean solutions [J]. Chemical Engineering Science, 2023, 269: 118431.
平甜甜, 尹鑫, 董玉, 等. 有机胺非水溶液吸收CO2的动力学研究进展[J]. 化工学报, 2021, 72(8): 3968-3983.
PING T T, YIN X, DONG Y, et al. Research progress on reaction kinetics of CO2 with amines in nonaqueous solvents [J]. CIESC Journal, 2021, 72(8): 3968-3983.
赵然磊, 马文涛, 徐晓, 等. 二氧化碳捕集化学吸收剂的研究进展[J]. 精细化工, 2023, 40(1): 1-9.
ZHAO R L, MA W T, XU X, et al. Research progress of chemical absorbents for carbon dioxide capture [J]. Fine Chemicals, 2023, 40(1): 1-9.
刘练波, 方梦祥, 许世森, 等. DMAC/DETA复配水溶液两相吸收剂吸收CO2的行为研究[J]. 中国电机工程学报, 2021, 41(18): 6284-6292.
LIU L B, FANG M X, XU S S, et al. Research on CO2 absorption behavior by DMAC/DETA biphasic absorbent [J]. Proceedings of CSEE, 2021, 41(18): 6284-6292.
CAPLOW M. Kinetics of carbamate formation and breakdown [J]. Journal of the American Chemical Society, 1968, 90(24): 6795-6803.
DANCKWERTS P V. The reaction of CO2 with ethanolamines [J]. Chemical Engineering Science, 1979, 34(4): 443-446.
BARZAGLI F, GIORGI C, MANI F, et al. Comparative study of CO2 capture by aqueous and nonaqueous 2-amino-2-methyl-1-propanol based absorbents carried out by 13C NMR and enthalpy analysis [J]. Industrial & Engineering Chemistry Research, 2019, 58(11): 4364-4373.
LONG J A, XUAN Z A, LONG Z A, et al. Feasibility and mechanism of an amine-looping process for efficient CO2 mineralization using alkaline ashes [J]. Chemical Engineering Journal, 2022, 430: 133118.
LIU J S, QIAN J, HU H M. Effect of H2O on absorption performance of tetraethylenepentamine-ethanol-CO2 two-phase absorbent and its mechanism [J]. International Journal of Greenhouse Gas Control, 2021, 110: 103406.
ZHENG S D, TAO M, LIU Q, et al. Capturing CO2 into the precipitate of a phase-changing solvent after absorption [J]. Environmental Science & Technology, 2014, 48(15): 8905-8910.
XIE H B, JOHNSON J K. A Mechanistic study of the monoethanolamine + CO2 reaction in aqueous solution: Is the zwitterion a necessary intermediate? [C]//The 2009 AIChE Annual Meeting. New York: American Institute of Chemical Engineers, 2009: 156200.
CROOKS J E, DONNELLAN J P. Kinetics and mechanism of the reaction between carbon dioxide and amines in aqueous solution [J]. Cheminform, 1989, 20(28): 331-333.
CHEN Y, QU Z H, HU H, et al. Nonaqueous amino-phenolic dual-functionalized ionic liquid absorbents for reversible CO2 capture: Phase change behaviors and mechanism [J]. Separation and Purification Technology, 2023, 308: 122986.
SHEN S F, SHI X Q, LI C X, et al. Nonaqueous (amine + glycol ether) solvents for energy-efficient CO2 capture: New insights into phase change behaviors and assessment of capture performance [J]. Separation and Purification Technology, 2022, 300: 121908.
MACHIDA H, ESAKI T, OBA K, et al. Phase separation solvent for CO2 capture [J]. Energy Procedia, 2017, 114: 823-826.
NAKAOKA M, TRAN K V B, YANASE K, et al. Prediction of phase behavior of CO2 absorbents using conductor-like screening model for real solvents (COSMO-RS): An approach to identify phase separation solvents of amine/ether/water systems upon CO2 absorption [J]. Industrial & Engineering Chemistry Research, 2020, 59(42): 19020-19029.
MACHIDA H, ANDO R, ESAKI T, et al. Low temperature swing process for CO2 absorption-desorption using phase separation CO2 capture solvent [J]. International Journal of Greenhouse Gas Control, 2018, 75: 1-7.
BAI L J, LU S J, ZHAO Q Z, et al. Low-energy-consuming CO2 capture by liquid-liquid biphasic absorbents of EMEA/DEEA/PX [J]. Chemical Engineering Journal, 2022, 450: 138490.
LV J, LIU S, LING H, et al. Development of a promising biphasic absorbent for post-combustion CO2 capture-sulfolane + 2-(methylamino)ethanol + H2O [J]. Industrial & Engineering Chemistry Research, 2020, 59(32): 14496-14506.
WANG R J, ZHAO H J, QI C R, et al. Novel tertiary amine-based biphasic solvent for energy efficient CO2 capture with low corrosivity [J]. Energy, 2022, 260: 125045.
WANG R J, ZHAO H J, WANG Y C, et al. Development of biphasic solvent for CO2 capture by tailoring the polarity of amine solution [J]. Fuel, 2022, 325: 124885.
符乐, 杨阳, 徐文青, 等. 新型相变有机胺吸收捕集CO2技术研究进展[J]. 化工进展, 2023, 42(4): 2068-2080.
FU L, YANG Y, XU W Q, et al. Research progress in CO2 capture technology using novel biphasic organic amine absorbent [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2068-2080.
安山龙, 王以群, 吴子健. 空间位阻胺AMP捕集CO2技术研究进展[J]. 应用化工, 2020, 49(10): 2636-2640.
AN S L, WANG Y Q, WU Z J. Research progresses in CO2 capture technology using sterically hindered amine AMP [J]. Applied Chemical Industry, 2020, 49(10): 2636-2640.
ZHANG X W, ZHANG X, LIU H L, et al. Reduction of energy requirement of CO2 desorption from a rich CO2-loaded MEA solution by using solid acid catalysts [J]. Applied Energy, 2017, 202: 673-684.
史晓琴. 2-(甲氨基)乙醇非水吸收剂捕集CO2过程特性研究[D]. 石家庄: 河北科技大学, 2020.
SHI X Q. Study on carbon dioxide cpature using nonaqueous 2-(methylamino) ethanol-based absorbent [D]. Shijiazhuang: Hebei University of Science and Technology, 2020.
郭超, 陈绍云, 陈思铭, 等. 13C NMR定量分析一乙醇胺(MEA)与CO2的吸收和解吸特性[J]. 化工进展, 2014, 33(11): 3101-3106.
GUO C, CHEN S Y, CHEN S M, et al. Quantitative analysis on CO2 absorption and desorption in monoethanolamine (MEA) solution by using 13C NMR [J]. Chemical Industry and Engineering Progress, 2014, 33(11): 3101-3106.
LUO Q, OUYANG Y, HONG S, et al. Combined experimental and computational study on the effect of solvent structure on developing CO2 biphasic absorbents [J]. Separation and Purification Technology, 2023, 308: 122856.
GAO X Y, LI X, CHENG S Y, et al. A novel solid-liquid ‘phase controllable’ biphasic amine absorbent for CO2 capture [J]. Chemical Engineering Journal, 2022, 430: 132932.
WANG L D, FANG J, MA H J, et al. Super-low energy consuming CO2 capture triggered by weak hydrogen bonds in solid-liquid phase separation [J]. Energy, 2023, 272: 127162.
GAO G, XU B, GAO X Y, et al. New insights into the structure-activity relationship for CO2 capture by tertiary amines from the experimental and quantum chemical calculation perspectives [J]. Chemical Engineering Journal, 2023, 473: 145277.
ZHOU X B, LI X L, WEI J W, et al. Novel nonaqueous liquid-liquid biphasic solvent for energy-efficient carbon dioxide capture with low corrosivity [J]. Environmental Science and Technology, 2020, 54(24): 16138-16146.
TU Z F, HAN F, LIU C, et al. 2-amino-2-methyl-1-propanol regulated triethylenetetramine-based nonaqueous absorbents for solid-liquid phase-change CO2 capture: Formation of crystalline powder products and mechanism analysis [J]. Separation and Purification Technology, 2023, 307: 122722.
ZHOU X B, LIU C, ZHANG J, et al. Novel 2-amino-2-methyl-1-propanol-based biphasic solvent for energy-efficient carbon dioxide capture using tetraethylenepentamine as a phase change regulator [J]. Energy, 2023, 270: 126930.
ZHAO X M, LI X Y, LU H F, et al. Predicting phase-splitting behaviors of an amine-organic solvent-water system for CO2 absorption: A new model developed by density functional theory and statistical and experimental methods [J]. Chemical Engineering Journal, 2021, 422: 130389.
CIVIŠ S, LAMANEC M, ŠPIRKO V, et al. Hydrogen bonding with hydridic hydrogen-experimental low-temperature IR and computational study: Is a revised definition of hydrogen bonding appropriate? [J]. Journal of American Chemical Society, 2023, 145(15): 8550-8559.
KEITH E, GUTOWSKI, EDWARD J, et al. Amine-functionalized task-specific ionic liquids: A mechanistic explanation for the dramatic increase in viscosity upon complexation with CO2 from molecular simulation [J]. Journal of American Chemical Society, 2008, 130(44): 14690-14704.
JOHNSON E R, KEINAN S, MORI-SANCHEZ P, et al. Revealing noncovalent interactions [J]. Journal of American Chemical Society, 2010, 132(18): 6498.
邱靖萱. L-脯氨酸及其衍生物的溶解行为与溶剂化效应研究[D]. 长春: 长春工业大学, 2022.
QIU J X. Solubility behavior and solvation effects of proline and its derivatives [D]. Changchun: Changchun University of Technology, 2022.
方志刚, 王智瑶, 郑新喜, 等. 团簇Co3NiB2极化率、偶极矩及态密度研究[J]. 贵州大学学报(自然科学版), 2022, 39(1): 17-24.
FANG Z G, WANG Z Y, ZHENG X X, et al. Study on the dolarizability, diople moment and density of states of cluster Co3NiB2 [J]. Journal of Guizhou University (Natural Sciences), 2022, 39(1): 17-24.
ZHOU X B, LIU C, FAN Y M, et al. Energy-efficient carbon dioxide capture using a novel low-viscous secondary amine-based nonaqueous biphasic solvent: Performance, mechanism, and thermodynamics [J]. Energy, 2022, 255: 124570.
LIU F, SHEN Y, SHEN L, et al. Novel amino-functionalized ionic liquid/organic solvent with low viscosity for CO2 capture [J]. Environmental Science & Technology, 2020, 54(6): 3520-3529.
LU T, CHEN Q X. Interaction region indicator: A simple real space function clearly revealing both chemical bonds and weak interactions [J]. Chemistry Methods, 2021, 1: 231-239.
LIU Z Y, LU T, CHEN Q X. Intermolecular interaction characteristics of the all-carboatomic ring, cyclocarbon: Focusing on molecular adsorption and stacking [J]. Carbon, 2021, 171: 514-523.
WANG X Y, ZHENG K Y, PENG Z X, et al. Exploiting proton masking to protect amino achieve efficient capture CO2 by amino-acids deep eutectic solvents [J]. Separation and Purification Technology, 2022, 299: 121787.
MENG F Z, JU T Y, HAN S Y, et al. Novel monoethanolamine absorption using ionic liquids as phase splitter for CO2 capture in biogas upgrading: High CH4 purity and low energy consumption [J]. Chemical Engineering Journal, 2023, 462: 142296.
姜蔚, 刘艳升, 邵子奇, 等. 羟乙基乙二胺/甲基二乙醇胺混合醇胺溶液吸收CO2的密度泛函研究[J]. 分子科学学报, 2022, 38(5): 407-414.
JIANG W, LIU Y S, SHAO Z Q, et al. Density functional theory investigation on carbon dioxide absorption process in aqueous solutions of methyl-di-ethanolamine and N-(2-amineoethyl)-ethanolamine [J]. Journal of Molecular Science, 2022, 38(5): 407-414.
YU Y N, SHEN Y, ZHOU X W, et al. Relationship between tertiary amine’s physical property and biphasic solvent’s CO2 absorption performance: Quantum calculation and experimental demonstration [J]. Chemical Engineering Journal, 2022, 428: 131241.
MURRAY J S, POLITZER P. Statistical analysis of the molecular surface electrostatic potential: An approach to describing noncovalent interactions in condensed phases [J]. Journal of Molecular Structure: Theochem, 1998, 425(1): 107-114.
孙路长, 连少翰, 王凯亮, 等. TETA/AMP复合水基CO2吸收液研究[J]. 洁净煤技术, 2020, 26(6): 58-63.
SUN L C, LIAN S H, WANG K L, et al. Research on aqueous TETA/AMP solution for CO2 capture [J]. Clean Coal Technology, 2020, 26(6): 58-63.
GAO G, JIANG W F, LI X S, et al. Novel assessment of highly efficient polyamines for post-combustion CO2 capture: Absorption heat, reaction rate, CO2 cyclic capacity, and phase change behavior [J]. Separation and Purification Technology, 2023, 306: 122615.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构