1.重庆大学 化学化工学院,前沿交叉学科研究院,煤矿灾害动力学与控制全国重点实验室,跨尺度多孔材料 研究中心,重庆 401331
2.内蒙古工业大学 化工学院,内蒙古 呼和浩特 010051
余海杰(1996—),硕士研究生,研究方向为甲烷催化转化,E-mail:824139378@qq.com。
李潇(1993—),博士,助理研究员,研究方向为金属纳米催化材料,E-mail:lixiao@cqu.edu.cn;
丁大千(1989—),博士,副教授,研究方向为含碳废弃物资源化利用,E-mail:ddqcatal@imut.edu.cn;
王健健(1987—),博士,研究员,研究方向为多相催化,E-mail:wangjianjian@cqu.edu.cn。
扫 描 看 全 文
余海杰, 李潇, 冉建速, 等. 甲烷选择性氧化制含氧化合物催化剂研究进展[J]. 低碳化学与化工, 2023,48(5):9-21.
YU Haijie, LI Xiao, RAN Jiansu, et al. Research progress in catalysts for selective oxidation of methane to oxygenated compounds[J]. Low-carbon Chemistry and Chemical Engineering, 2023,48(5):9-21.
余海杰, 李潇, 冉建速, 等. 甲烷选择性氧化制含氧化合物催化剂研究进展[J]. 低碳化学与化工, 2023,48(5):9-21. DOI: 10.12434/j.issn.2097-2547.20230279.
YU Haijie, LI Xiao, RAN Jiansu, et al. Research progress in catalysts for selective oxidation of methane to oxygenated compounds[J]. Low-carbon Chemistry and Chemical Engineering, 2023,48(5):9-21. DOI: 10.12434/j.issn.2097-2547.20230279.
甲烷选择性氧化制含氧化合物是天然气资源高效利用的新路线之一。围绕甲烷选择性氧化制甲醇、甲醛、甲酸和乙酸,综述了国内外研究的新进展,分析了催化剂的活性中心、反应过程中的活性物种、反应机理,以及催化剂的构效关系,展望了甲烷选择性氧化制含氧化合物的未来发展方向,可为设计与开发高活性、高选择性的甲烷选择性氧化催化剂提供参考。
The selective oxidation of methane to oxygenated compounds is considered a novel approach for the efficient utilization of natural gas resources. Recent advancements in both domestic and international research were reviewed, focusing on the selective oxidation of methane to methanol, formaldehyde, formic acid, and acetic acid. The active centers of catalysts, the active intermediates formed during the reaction, the reaction mechanism, and the structure-activity relationship of catalysts were analyzed. Furthermore, the future prospects for the selective oxidation of methane to oxygenated compounds were outlined. It can offer theoretical guidance for the design and development of highly active and selective catalysts for selective oxidation of methane.
甲烷选择性氧化活性物种反应机理催化剂
methaneselective oxidationactive intermediatereaction mechanismcatalysts
MAO M, LIU L M, LIU Z H, Recent insights into Cu-based catalytic sites for the direct conversion of methane to methanol [J]. Molecules, 2022, 27(21): 7146.
ODA A, AONO K, MURATA N, et al. Rational design of ZSM-5 zeolite containing a high concentration of single Fe sites capable of catalyzing the partial oxidation of methane with high turnover frequency [J]. Catal Sci Technol, 2022, 12(2): 542-550.
DUMMER N F, WILLOCK D J, HE Q, et al. Methane oxidation to methanol [J]. Chem Rev, 2023, 123(9): 6359-6411.
NKINAHAMIRA F, YANG R J, ZHU R S, et al. Current progress on methods and technologies for catalytic methane activation at low temperatures [J]. Adv Sci, 2023, 10(5): 2204566.
LIU Y J, WANG R J, RUSSELL C K, et al. Mechanisms for direct methane conversion to oxygenates at low temperature [J]. Coordin Chem Rev, 2022, 470: 214691.
KUMAR P, AL-ATTAS T A, HU J G, et al. Single atom catalysts for selective methane oxidation to oxygenates [J]. ACS Nano, 2022, 16(6): 8557-8618.
FANG G Q, LIN J, WANG X D. Low-temperature conversion of methane to oxygenates by supported metal catalysts: From nanoparticles to single atoms [J]. Chin J Chem Eng, 2021, 38: 18-29.
FREAKLEY S J, DIMITRATOS N, WILLOCK D J, et al. Methane oxidation to methanol in water [J]. Acc Chem Res, 2021, 54(11): 2614-2623.
BARNES A, LEWIS R J, MORGAN D J, et al. Enhancing catalytic performance of AuPd catalysts towards the direct synthesis of H2O2 through incorporation of base metals [J]. Catal Sci Technol, 2022, 12(6): 1986-1995.
NARSIMHAN K, IYOKI K, DINH K, et al. Catalytic oxidation of methane into methanol over copper-exchanged zeolites with oxygen at low temperature [J]. ACS Central Sci, 2016, 2(6): 424-429.
AB RAHIM M H, FORDE M M, JENKINS R L, et al. Oxidation of methane to methanol with hydrogen peroxide using supported gold-palladium alloy nanoparticles [J]. Angew Chem Int Ed, 2013, 52(4): 1280-1284.
GRUNDNER S, MARKOVITS M A C, LI G, et al. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol [J]. Nat Commun, 2015, 6(1): 7546.
郭天宇, 吴金婷, 杜建平, 等. 低浓度甲烷氧化催化剂的研究进展[J]. 天然气化工—C1化学与化工, 2015, 40(6): 83-87.
杨杰, 常辉, 隋志军, 等. 化学链催化甲烷氧化反应研究进展[J]. 化工进展, 2021, 40(4): 1928-1947.
ROSS M O, ROSENZWEIG A C. A tale of two methane monooxygenases [J]. J Biol Inorg Chem, 2017, 22(2/3): 307-319.
DA SILVA J C S, PENNIFOLD R C R, HARVEY J N, et al. A radical rebound mechanism for the methane oxidation reaction promoted by the dicopper center of a pMMO enzyme: A computational perspective [J]. Dalton Trans, 2016, 45(6): 2492-2504.
CHENG Q P, LI G N, YAO X L, et al. Maximizing active Fe species in ZSM-5 zeolite using organic-template-free synthesis for efficient selective methane oxidation [J]. J Am Chem Soc, 2023, 145(10): 5888-5898.
YU X, WU B, HUANG M, et al. IrFe/ZSM-5 synergistic catalyst for selective oxidation of methane to formic acid [J]. Energy Fuels, 2021, 35(5): 4418-4427.
HAMMOND C, FORDE M M, AB RAHIM M H, et al. Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5 [J]. Angew Chem Int Ed, 2012, 51(21): 5129-5133.
PARK M B, AHN S H, MANSOURI A, et al. Comparative study of diverse copper zeolites for the conversion of methane into methanol [J]. ChemCatchem, 2017, 9(19): 3705-3713.
TANG X, WANG L, YANG B, et al. Direct oxidation of methane to oxygenates on supported single Cu atom catalyst [J]. Appl Catal B-Environ, 2021, 285: 119827.
ANTIL N, CHAUHAN M, AKHTAR N, et al. Metal-Organic framework-encaged monomeric cobalt(III) hydroperoxides enable chemoselective methane oxidation to methanol [J]. ACS Catal, 2022, 12(18): 11159-11168.
FANG G Q, WEI F F, LIN J, et al. Retrofitting Zr-oxo nodes of UiO-66 by Ru single atoms to boost methane hydroxylation with nearly total selectivity [J]. J Am Chem Soc, 2023, 145(24): 13169-13180.
FANG Z H, HUANG M Y, LIU B, et al. Insights into Fe species structure-performance relationship for direct methane conversion toward oxygenates over Fe-MOR catalysts [J]. ChemCatchem, 2022, 14(13): e202200218.
SUN S M, BARNES A J, GONG X X, et al. Lanthanum modified Fe-ZSM-5 zeolites for selective methane oxidation with H2O2 [J]. Catal Sci Technol, 2021, 11(24): 8052-8064.
陈景润, 刘俊霞, 张伟, 等. 铜改性分子筛催化甲烷氧化制甲醇研究新进展 [J]. 天然气化工—C1化学与化工, 2020, 45(6): 114-117.
WANG X X, WANG Y, TANG Q H, et al. MCM-41-supported iron phosphate catalyst for partial oxidation of methane to oxygenates with oxygen and nitrous oxide [J]. J Catal, 2003, 217(2): 457-467.
TANG Y, LI Y T, FUNG V, et al. Single rhodium atoms anchored in micropores for efficient transformation of methane under mild conditions [J]. Nat Commun, 2018, 9(1): 1231.
YU B Y, CHENG L, DAI S, et al. Silver and copper dual single atoms boosting direct oxidation of methane to methanol via synergistic catalysis [J]. Adv Sci, 2023: 2302143.
HUANG W X, ZHANG S R, TANG Y, et al. Low-temperature transformation of methane to methanol on Pd1O4 single sites anchored on the internal surface of microporous silicate [J]. Angew Chem Int Ed, 2016, 55(43): 13441-13445.
ZHU K X, LIANG S X, CUI X J, et al. Highly efficient conversion of methane to formic acid under mild conditions at ZSM-5-confined Fe-sites [J]. Nano Energy, 2021, 82: 105718.
WU B, LIN T J, LU Z X, et al. Fe binuclear sites convert methane to acetic acid with ultrahigh selectivity [J]. Chem, 2022, 8(6): 1658-1672.
LEWIS R J, BARA-ESTAUN A, AGARWAL N, et al. The direct synthesis of H2O2 and selective oxidation of methane to methanol using HZSM-5 supported AuPd catalysts [J].Catal Lett, 2019, 149(11): 3066-3075.
DINH K T, SULLIVAN M M, NARSIMHAN K, et al. Continuous partial oxidation of methane to methanol catalyzed by diffusion-paired copper dimers in copper-exchanged zeolites [J]. J Am Chem Soc, 2019, 141(29): 11641-11650.
JEONG Y R, JUNG H, KANG J, et al. Continuous synthesis of methanol from methane and steam over copper-mordenite [J]. ACS Catal, 2021, 11(3): 1065-1070.
BEZNIS N V, VAN LAAK A N C, WECKHUYSEN B M, et al. Oxidation of methane to methanol and formaldehyde over Co-ZSM-5 molecular sieves: Tuning the reactivity and selectivity by alkaline and acid treatments of the zeolite ZSM-5 agglomerates [J]. Micropor Mesopor Mater, 2011, 138(1/2/3): 176-183.
SHAN J J, LI M W, ALLARD L F, et al. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts [J]. Nature, 2017, 551(7682): 605-608.
LIN L, ZHANG G, KANG L, et al. Selective oxidation of methane into formic acid over ZIF-8-encapsulated mononuclear Fe species under mild conditions [J]. ChemCatchem, 2022, 15(1): e202201234.
ZHENG J, YE J Y, ORTUNO M A, et al. Selective methane oxidation to methanol on Cu-oxo dimers stabilized by zirconia nodes of an NU-1000 metal-organic framework [J]. J Am Chem Soc, 2019, 141(23): 9292-9304.
RAHIM M H, ARMSTRONG R D, HAMMOND C, et al. Low temperature selective oxidation of methane to methanol using titania supported gold palladium copper catalysts [J]. Catal Sci Technol, 2016, 6(10): 3410-3418.
WILLIAMS C, CARTER J H, DUMMER N F, et al. Selective oxidation of methane to methanol using supported AuPd catalysts prepared by stabilizer-free sol-immobilization [J]. ACS Catal, 2018, 8(3): 2567-2576.
AN D L, ZHANG Q H, WANG Y. Copper grafted on SBA-15 as efficient catalyst for the selective oxidation of methane by oxygen [J]. Catal Today, 2010, 157(1/2/3/4): 143-148.
WANG Y, WANG X X, SU Z, et al. SBA-15-supported iron phosphate catalyst for partial oxidation of methane to formaldehyde [J]. Catal Today, 2004, 93: 155-161.
YU T, LI Z, JONES W, et al. Identifying key mononuclear Fe species for low-temperature methane oxidation [J]. Chem Sci, 2021, 12(9): 3152-3160.
MLEKODAJ K, LEMISHKA M, SKLENAK S, et al. Dioxygen splitting at room temperature over distant binuclear transition metal centers in zeolites for direct oxidation of methane to methanol [J]. Chem Commun, 2021, 57(28): 3472-3475.
HE M, ZHANG J, SUN X L, et al. Theoretical study on methane oxidation catalyzed by Fe/ZSM-5: The significant role of water on binuclear iron active sites [J]. J Phys Chem C, 2016, 120(48): 27422-27429.
SZECSENYI A, LI G N, GASCON J, et al. Mechanistic complexity of methane oxidation with H2O2 by single-site Fe/ZSM-5 catalyst [J]. ACS Catal, 2018, 8(9): 7961-7972.
KNORPP A J, PINAR A B, BAERLOCHER C, et al. Paired copper monomers in zeolite omega: The active ste for methane-to-methanol conversion [J]. Angew Chem Int Ed, 2021, 60(11): 5854-5858.
HEYER A J, PLESSERS D, BRAUN A, et al. Methane activation by a mononuclear copper active site in the zeolite mordenite: Effect of metal nuclearity on reactivity [J]. J Am Chem Soc, 2022, 144(42): 19305-19316.
SUSHKEVICH V L, PALAGIN D, RANOCCHIARI M, et al. Selective anaerobic oxidation of methane enables direct synthesis of methanol [J]. Science, 2017, 356(6337): 523-527.
LI G N, VASSILEV P, SANCHEZ-SANCHEZ M, et al. Stability and reactivity of copper oxo-clusters in ZSM-5 zeolite for selective methane oxidation to methanol [J]. J Catal, 2016, 338: 305-312.
MARKOVITS M A C, JENTYS A, TROMP M, et al. Effect of location and distribution of Al sites in ZSM-5 on the formation of Cu-oxo clusters active for direct conversion of methane to methanol [J]. Top Catal, 2016, 59(17/18): 1554-1563.
SUN L L, WANG Y, WANG C M, et al. Water-involved methane-selective catalytic oxidation by dioxygen over copper zeolites [J]. Chem, 2021, 7(6): 1557-1568.
YANG J Y, DU X R, QIAO B T, Methane oxidation to methanol over copper-containing zeolite [J]. Chem, 2021, 7(9): 2270-2272.
YU T, LI Z, LIN L, et al. Highly selective oxidation of methane into methanol over Cu-promoted monomeric Fe/ZSM-5 [J]. ACS Catal, 2021, 11(11): 6684-6691.
WU J F, GAO X D, WU L M, et al. Mechanistic insights on the direct conversion of methane into methanol over Cu/Na-ZSM-5 zeolite: Evidence from EPR and solid-state NMR [J]. ACS Catal, 2019, 9(9): 8677-8681.
KOLGANOV A A, GABRIENKO A A, YASHNIK S A, et al. Nature of the surface intermediates formed from methane on Cu-ZSM-5 zeolite: A combined solid-state nuclear magnetic resonance and density functional theory study [J]. J Phys Chem C, 2020, 124(11): 6242-6252.
OSADCHII D Y, OLIVOS-SUAREZ A I, SZECSENYI A, et al. Isolated Fe sites in metal organic frameworks catalyze the direct conversion of methane to methanol [J]. ACS Catal, 2018, 8(6): 5542-5548.
XU G W, YU A M, XU Y J, et al. Selective oxidation of methane to methanol using AuPd@ZIF-8 [J]. Catal Commun, 2021, 158: 106338.
ZHONG M J, XU Y S, LI J, et al. Engineering PdAu nanowires for highly efficient direct methane conversion to methanol under mild conditions [J]. J Phys Chem C, 2021, 125(23): 12713-12720.
LUCAS A, VALVERDE J L, RODRIGUEZ L, et al. Partial oxidation of methane to formaldehyde over Mo/HZSM-5 catalysts [J]. Appl Catal A-Gen, 2000, 203(1): 81-90.
LI Y, AN D L, ZHANG Q H, et al. Copper-catalyzed selective oxidation of methane by oxygen: Studies on catalytic behavior and functioning mechanism of CuOx/SBA-15 [J]. J Phys Chem C, 2008, 112(35): 13700-13708.
TARAN O P, YASHNIK S A, BOLTENKOV V V, et al. Formic acid production via methane peroxide oxidation over oxalic acid activated Fe-MFI catalysts [J]. Top Catal, 2019, 62(5/6): 491-507.
YANG N T, REN Z L, YANG C G, et al. Direct oxidation of CH4 to HCOOH over extra-framework stabilized Fe@MFI catalyst at low temperature [J]. Fuel, 2021, 305: 121624.
SHAHAMI M, SHANTZ D F, Zeolite acidity strongly influences hydrogen peroxide activation and oxygenate selectivity in the partial oxidation of methane over M, Fe-MFI M: Ga, Al, B) zeolites [J]. Catal Sci Technol, 2019, 9(11): 2945-2951.
NARSIMHAN K, MICHAELIS V K, MATHIES G, et al. Methane to acetic acid over Cu-exchanged zeolites: Mechanistic insights from a site-specific carbonylation reaction [J]. J Am Chem Soc, 2015, 137(5): 1825-1832.
ANTIL N, CHAUHAN M, AKHTAR N, et al. Selective methane oxidation to acetic acid using molecular oxygen over a mono-copper hydroxyl catalyst [J]. J Am Chem Soc, 2023, 145(11): 6156-6165.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构