1.重庆大学 化学化工学院,重庆 401331
2.重庆大学 煤矿灾害动力学与控制国家重点实验室,重庆 400044
钱慧琳(2000—),硕士研究生,研究方向为二氧化碳化学转化,E-mail:361140273@qq.com。
杜 军(1964—),博士,教授,研究方向为二氧化碳化学利用、大气污染物转化及氮氧化物催化转化,E-mail:dujune@cqu.edu.cn;
陶长元(1963—),博士,教授,研究方向为电化学工程、化工过程强化及催化过程等,E-mail:taocy@cqu.edu.cn。
扫 描 看 全 文
钱慧琳, 冉金玲, 何安帮, 等. 二氧化碳-甲烷干气重整反应及其积炭控制的热力学分析[J]. 低碳化学与化工, 2023,48(5):55-61.
QIAN Huilin, RAN Jinling, HE Anbang, et al. Thermodynamic analysis of carbon dioxide-methane dry reforming and its carbon deposition control[J]. Low-carbon Chemistry and Chemical Engineering, 2023,48(5):55-61.
钱慧琳, 冉金玲, 何安帮, 等. 二氧化碳-甲烷干气重整反应及其积炭控制的热力学分析[J]. 低碳化学与化工, 2023,48(5):55-61. DOI: 10.12434/j.issn.2097-2547.20230276.
QIAN Huilin, RAN Jinling, HE Anbang, et al. Thermodynamic analysis of carbon dioxide-methane dry reforming and its carbon deposition control[J]. Low-carbon Chemistry and Chemical Engineering, 2023,48(5):55-61. DOI: 10.12434/j.issn.2097-2547.20230276.
二氧化碳-甲烷干气重整(DRM)反应制合成气(H,2, + CO)是二氧化碳(CO,2,)资源化利用的重要研究方向,关键问题在于积炭的控制。利用FactSage软件,基于吉布斯自由能最小法,对DRM反应及其积炭控制进行了热力学计算分析。结果显示,高温(600~1200 ℃)、进料比(,n,(CH,4,)/,n,(CO,2,))为1.00、常压等单因素条件下,有利于DRM反应进行,可以实现较好的反应转化速率;以炭的残余量为0.01%(物质的量分数)作为积炭区与非积炭区的临界点,设定反应压力为0.10 MPa、反应温度为900 ℃,当进料比小于等于0.95时,反应处于非积炭区。研究结果对优化DRM反应的操作条件及催化剂设计具有一定的指导意义。
The carbon dioxide-methane dry reforming (DRM) reaction for the synthesis of syngas (H,2, + CO) is an important research direction for the resourceful utilization of carbon dioxide (CO,2,), with a key focus on carbon deposition control. Using FactSage software and employing the Gibbs free energy minimization method, a thermodynamic computational analysis of the DRM reaction and its carbon deposition control was conducted. The results indicate that under single-factor conditions such as high temperature (600 °C to 1200 °C), a feed ratio (,n,(CH,4,)/,n,(CO,2,)) of 1.00, and atmospheric pressure, favorable conditions for the DRM reaction can be achieved, leading to improved reaction conversion rates. By setting a carbon residue threshold at 0.01% (mole fraction), the critical conditions distinguishing between the carbon deposition and non-deposition zones are determined: a reaction pressure of 0.10 MPa, a reaction temperature of 900 °C, and the reaction falling within the non-carbon deposition zone when the feed molar ratio is less than or equal to 0.95. The research outcomes hold significant guidance for optimizing the operational parameters of DRM reactions and catalyst design.
二氧化碳甲烷干气重整积炭控制热力学分析
carbon dioxidedry reforming of methanecarbon deposition controlthermodynamic analysis
HESTRES L E, HOPKE J E. Fossil fuel divestment: Theories of change, goals, and strategies of a growing climate movement [J]. Environ Polit, 2020, 29(3): 371-389.
SUN S H, SUN H M, WILLIAMS P T, et al. Recent advances in integrated CO2 capture and utilization: A review [J]. Sustain Energy Fuels, 2021, 5(18): 4546-4559.
肖荣鸽, 魏王颖, 杨奕, 等. DMR工艺参数优化新方法探究[J]. 天然气化工—C1化学与化工, 2022, 47(6): 162-168.
YENTEKAKIS I V, PANAGIOTOPOULOU P, ARTEMAKIS G. A review of recent efforts to promote dry reforming of methane (DRM) to syngas production via bimetallic catalyst formulations [J]. Appl Catal B, 2021, 296: 120210.
BUELENSL C, GALVITE V V, POELMAN H, et al. Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier's principle [J]. Science, 2016, 354(6311): 449-452.
PHAM X H, ASHIK U P M, HAYASHI J I, et al. Review on the catalytic tri-reforming of methane-Part Ⅱ: Catalyst development [J]. Appl Catal A, 2021, 623: 118286.
郑幼松, 邹宗鹏, 吕莉, 等. 甲烷干重整抗失活镍基催化剂研究进展[J]. 天然气化工—C1化学与化工, 2021, 46(6): 1-8+16.
ABDULLAH B, ABD GHANI N A, VO D V N. Recent advances in dry reforming of methane over Ni-based catalysts [J]. J Clean Prod, 2017, 162: 170-185.
QIN Z Z, CHEN J, XIE X L, et al. CO2 reforming of CH4 to syngas over nickel-based catalysts [J]. Environ Chem Lett, 2020, 18(4): 997-1017.
ARORA S, PRASAD R. An overview on dry reforming of methane: Strategies to reduce carbonaceous deactivation of catalysts [J]. RSC Adv, 2016, 6(110): 108668-108688.
LEI T Y, MAO J T, LIU X C, et al. Carbon deposition and permeation on nickel surfaces in operando conditions: A theoretical study [J]. J Phys Chem C, 2021, 125(13): 7166-7177.
FAN C, ZHU Y A, YANG M L, et al. Density functional theory-assisted microkinetic analysis of methane dry reforming on Ni catalyst [J]. Ind Eng Chem Res, 2015, 54(22): 5901-5913.
WU J W, GAO J, LIAN S S, et al. Engineering the oxygen vacancies enables Ni single-atom catalyst for stable and efficient C—H activation [J]. Appl Catal B, 2022, 314: 121516.
苏通明, 王传棽, 宫博, 等. 甲烷干重整Ni基催化剂上积碳调控的研究进展[J]. 低碳化学与化工, 2023, 48(3): 1-10.
CHEN S Y, ZAFFRAN J, YANG B, et al. Dry reforming of methane over the cobalt catalyst: Theoretical insights into the reaction kinetics and mechanism for catalyst deactivation [J]. Appl Catal B, 2020, 270: 118859.
NIKOO M K, AMIN N A S. Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation [J]. Fuel Process Technol, 2011, 92(3): 678-691.
CHALLIWALA M S, GHOURI M M, LINKE P, et al. A combined thermo-kinetic analysis of various methane reforming technologies: Comparison with dry reforming [J]. J CO2 Util, 2017, 17: 99-111.
JANG W J, JEONG D W, SHIM J O, et al. Combined steam and carbon dioxide reforming of methane and side reactions: Thermodynamic equilibrium analysis and experimental application [J]. Appl Energ, 2016, 173: 80-91.
DEMIDOV D V, MISHIN I V, MIKHAILOV M N, et al. Gibbs free energy minimization as a way to optimize the combined steam and carbon dioxide reforming of methane [J]. Int J Hydrogen Energ, 2011, 36(10): 5941-5950.
ATASHI H, GHOLIZADEH J, TABRIZI F F, et al. Thermodynamic analysis of carbon dioxide reforming of methane to syngas with statistical methods [J]. Int J Hydrogen Energ, 2017, 42(8): 5464-5471.
ARAMOUNI N A K, TOUMA J G, TARBOUSH B A, et al. Catalyst design for dry reforming of methane: Analysis review [J]. Renew Sust Energ Rev, 2018, 82: 2570-2585.
MA J, SUN N N, ZHANG X L, et al. A short review of catalysis for CO2 conversion [J]. Catal Today, 2009, 148(3/4): 221-231.
CAO P F, STEPHEN A, WU T, et al. Thermodynamic equilibrium analysis of CO2 reforming of methane: Elimination of carbon deposition and adjustment of H2/CO ratio [J]. Energy Procedia, 2017, 105: 1864-1869.
0
浏览量
7
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构