1.太原理工大学 化学工程与技术学院,山西 太原 030024
陈久弘(1999—),硕士研究生,研究方向为CO2捕集,E-mail:1136474391@qq.com。
陈杨(1988—),博士,副研究员,硕士生导师,研究方向为多孔材料制备与气体吸附分离,E-mail:chenyangtyut@163.com。
扫 描 看 全 文
陈久弘, 王毅, 王恺华, 等. 二氧化碳捕集用吸附分离技术及其吸附材料研究进展[J]. 低碳化学与化工, 2023,48(5):62-70.
CHEN Jiuhong, WANG Yi, WANG Kaihua, et al. Research progress on adsorption and separation technologies and adsorption materials for carbon dioxide capture[J]. Low-carbon Chemistry and Chemical Engineering, 2023,48(5):62-70.
陈久弘, 王毅, 王恺华, 等. 二氧化碳捕集用吸附分离技术及其吸附材料研究进展[J]. 低碳化学与化工, 2023,48(5):62-70. DOI: 10.12434/j.issn.2097-2547.20230261.
CHEN Jiuhong, WANG Yi, WANG Kaihua, et al. Research progress on adsorption and separation technologies and adsorption materials for carbon dioxide capture[J]. Low-carbon Chemistry and Chemical Engineering, 2023,48(5):62-70. DOI: 10.12434/j.issn.2097-2547.20230261.
为缓解温室效应带来的一系列严重的环境问题,亟需对主要的温室气体二氧化碳(CO,2,)进行减排。CO,2,的捕集、利用与封存(CCUS)技术作为可以有效进行碳减排,得到了广泛应用。在CO,2,捕集技术中,物理吸附分离技术具有能耗低、产品气质量稳定和适应性强等优点,可推广至不同工业应用场景。介绍了3种吸附分离技术的CO,2,捕集场景:燃烧后烟气捕集、天然气净化以及直接空气捕集,以及可用于吸附分离技术的4种CO,2,吸附材料:多孔碳材料、沸石分子筛、硅基材料与金属有机骨架材料,并对以上材料的适用条件与场景进行了总结,最后对CO,2,吸附剂未来的发展方向进行了展望。
In order to alleviate a series of serious environmental problems caused by greenhouse effect, it is urgent to reduce the main greenhouse gas, carbon dioxide (CO,2,) emissions. CO,2, capture, utilization and storage (CCUS) technology has been widely used as an effective method to reduce carbon emissions. Among CO,2, capture technologies, physical adsorption separation technology has the advantages of low energy consumption, stable product gas quality and strong adaptability, and can be extended to different industrial application scenarios. Three CO,2, capture scenarios for adsorption and separation technologies: post-combustion flue gas capture, natural gas purification and direct air capture, and four kinds of CO,2, adsorbent materials: porous carbon materials, zeolite molecular sieves, silicon-based materials and metal-organic framework materials were introduced. The applicable conditions and scenarios of the above materials were summarized, and the future development direction of CO,2, adsorbents was prospected.
CO2捕集多孔材料物理吸附变压吸附
CO2 captureporous materialphysical adsorptionpressure swing adsorption
RAY B, CHURIPARD S R, PETER S C. An overview of the materials and methodologies for CO2 capture under humid conditions [J]. J Mater Chem A, 2021, 9(47): 26498-26527.
杨菲, 刘苗苗, 陆诗建, 等. 适用于烟气CO2捕集的相变吸收剂研究进展 [J]. 低碳化学与化工, 2023, 48(2): 113-120.
张贤, 杨晓亮, 鲁玺, 等. 中国二氧化碳捕集利用与封存 (CCUS)年度报告(2023) [R]. 中国21世纪议程管理中心, 全球碳捕集与封存研究院, 清华大学, 2023.
AGHEL B, JANATI S, WONGWISES S, et al. Review on CO2 capture by blended amine solutions [J]. Int J Greenhouse Gas Con, 2022, 119: 103715.
MENG F Z, MENG Y, JU T Y, et al. Research progress of aqueous amine solution for CO2 capture: A review [J]. Renew Sust Energ Rev, 2022, 168: 112902.
孙成珍, 罗东, 白博峰. 二维材料气体分离膜及其应用研究进展[J]. 科学通报, 2022, 68(1): 53-71.
VALAPPIL R S K, GHASEM N, AL-MARZOUQI M. Current and future trends in polymer membrane-based gas separation technology: A comprehensive review [J]. J Ind Eng Chem, 2021, 98: 103-129.
高婉, 严格, 徐永辉, 等. 用于二氧化碳捕集的固体吸附剂研究进展[J]. 低碳化学与化工, 2023, 48(1): 145-155.
SARKAR J, BHATTACHARYYA S. Operating characteristics of transcritical CO2 heat pump for simultaneous water cooling and heating [J]. Arch Thermodyn, 2012, 33: 24-40.
CHEN C X, YANG S X. The energy demand and environmental impacts of oxy-fuel combustion vs. post-combustion capture in China [J]. Energy Strateg Rev, 2021, 38: 100701.
LAI J Y, NGU L H, HASHIM S S. A review of CO2 adsorbents performance for different carbon capture technology processes conditions [J]. Greenh Gases, 2021, 11(5): 1076-1117.
WU X M, YUN Y S, QIN Z, et al. The advances of post-combustion CO2 capture with chemical solvents: Review and guidelines [J]. Energy Procedia, 2014, 63: 1339-1346.
AL-ROWAILI F N, KHALED M, JAMAL A, et al. Mixed matrix membranes for H2/CO2 gas separation-A critical review [J]. Fuel, 2023, 333: 126285.
YADAV S, MONDAL S S. A review on the progress and prospects of oxy-fuel carbon capture and sequestration (CCS) technology [J]. Fuel, 2022, 308: 122057.
LIU W, LIN Y C, JIANG L, et al. Thermodynamic exploration of two-stage vacuum-pressure swing adsorption for carbon dioxide capture [J]. Energy, 2022, 241: 122901.
LI D D, ZHOU Y, SHEN Y H, et al. Experiment and simulation for separating CO2/N2 by dual-reflux pressure swing adsorption process [J]. Chem Eng J, 2016, 297: 315-324.
SHEN Y H, ZHOU Y, LI D D, et al. Dual-reflux pressure swing adsorption process for carbon dioxide capture from dry flue gas [J]. Int J Greenh Gas Con, 2017, 65: 55-64.
NGUYEN T T T, LIN J B, SHIMIZU G K H, et al. Separation of CO2 and N2 on a hydrophobic metal organic framework CALF-20 [J]. Chem Eng J, 2022, 442: 136263.
MICHIO I, HIROMITSU O, NOBUO A, et al. Technology for removing carbon dioxide from power plant flue gas by the physical adsorption method [J]. Energ Convers Manage, 1996, 37(6/7/8): 929-933.
WANG L, YANG Y, SHEN W L, et al. CO2 capture from flue gas in an existing coal-fired power plant by two successive pilot-scale VPSA units [J]. Ind Eng Chem Res, 2013, 52(23): 7947-7955.
WEH R, XIAO G K, POUYA E S, et al. Direct helium recovery from natural gas by dual reflux pressure swing adsorption cascade [J]. Chem Eng J, 2022, 450: 137894.
ABD A A, OTHMAN M R, SHAMSUDIN I K, et al. Biogas upgrading to natural gas pipeline quality using pressure swing adsorption for CO2 separation over UiO-66: Experimental and dynamic modelling assessment [J]. Chem Eng J, 2023, 453: 139774.
SHANG J, HANIF A, LI G, et al. Separation of CO2 and CH4 by pressure swing adsorption using a molecular trapdoor chabazite adsorbent for natural gas purification [J]. Ind Eng Chem Res, 2020, 59(16): 7857-7865.
TAO L F, XIAO P, QADER A, et al. CO2 capture from high concentration CO2 natural gas by pressure swing adsorption at the CO2CRC Otway site, Australia [J]. Int J Greenh Gas Con, 2019, 83: 1-10.
ZHU X C, XIE W W, WU J Y, et al. Recent advances in direct air capture by adsorption [J]. Chem Soc Rev, 2022, 51(15): 6574-6651.
朱炫灿, 葛天舒, 吴俊晔, 等. 吸附法碳捕集技术的规模化应用和挑战[J]. 科学通报, 2021, 66: 2861-2877.
宋珂琛, 崔希利, 邢华斌. 二氧化碳直接空气捕集材料与技术研究进展[J]. 化工进展, 2022, 41(3): 1152-1162.
GUTKNECHTA V, SNÆBJÖRNSDÓTTIR S Ó, SIGFÚSSON B, et al. Creating a carbon dioxide removal solution by combining rapid mineralization of CO2 with direct air capture [J]. Energy Procedia, 2018, 146: 129-134.
SINHA A, REALFF M J. A parametric study of the techno-economics of direct CO2 air capture systems using solid adsorbents [J]. Aiche J, 2019, 65(7): 16607.
ZHU X C, GE T S, YANG F, et al. Design of steam-assisted temperature vacuum-swing adsorption processes for efficient CO2 capture from ambient air [J]. Renew Sust Energ Rev, 2021, 137: 110651.
SERAFIN J, SRENSCEK-NAZZAL J, KAMINSKA A, et al. Management of surgical mask waste to activated carbons for CO2 capture [J]. J CO2 Util, 2022, 59: 101970.
HE S, CHEN G Y, XIAO H, et al. Facile preparation of N-doped activated carbon produced from rice husk for CO2 capture [J]. J Colloid Interf Sci, 2021, 582: 90-101.
ZHANG Z, LUO D, LUI G, et al. In-situ ion-activated carbon nanospheres with tunable ultramicroporosity for superior CO2 capture [J]. Carbon, 2019, 143: 531-541.
SHOKROO E J, FARSANI D J, MEYMANDI H K, et al. Comparative study of zeolite 5A and zeolite 13X in air separation by pressure swing adsorption [J]. Korean J Chem Eng, 2016, 33(4): 1391-1401.
KIM M, LEE J W, KIM S, et al. CO2 adsorption on zeolite 13X modified with hydrophobic octadecyltrimethoxysilane for indoor application [J]. J Clean Prod, 2022, 337: 130597.
ZHOU Y, ZHANG J L, WANG L, et al. Self-assembled iron-containing mordenite monolith for carbon dioxide sieving [J]. Science, 2021, 373: 315-320.
WANG X H, CHEN H W, ZHANG M S, et al. Organic template-free synthesis of K-SAPO-34 zeolite for efficient CO2 separation [J]. Fuel, 2023, 338: 127233.
SHANG J, LI G, SINGH R, et al. Discriminative separation of gases by a “molecular trapdoor” mechanism in chabazite zeolites [J]. J Am Chem Soc, 2012, 134(46): 19246-19253.
MARTÍN C F, SWEATMAN M B, BRANDANI S, et al. Wet impregnation of a commercial low cost silica using DETA for a fast post-combustion CO2 capture process [J]. Appl Energ, 2016, 183: 1705-1721.
ANYANWU J T, WANG Y R, YANG R T. Amine-grafted silica gels for CO2 capture including direct air capture [J]. Ind Eng Chem Res, 2019, 59(15): 7072-7079.
SARDO M, AFONSO R, JUZKOW J, et al. Unravelling moisture-induced CO2 chemisorption mechanisms in amine-modified sorbents at the molecular scale [J]. J Mater Chem A, 2021, 9(9): 5542-5555.
KULKARNI V, PANDA D, SINGH S K. Direct air capture of CO2 over amine-modified hierarchical silica [J]. Ind Eng Chem Res, 2023, 62(8): 3800-3811.
LI J R, KUPPLER R J, ZHOU H C. Selective gas adsorption and separation in metal-organic frameworks [J]. Chem Soc Rev, 2009, 38(5): 1477-1504.
LI H, WANG K C, SUN Y J, et al. Recent advances in gas storage and separation using metal-organic frameworks [J]. Materials Today, 2018, 21(2): 108-121.
LIN J B, NGUYEN T T T, RAMANATHAN V, et al. A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture [J]. Science, 2021, 374: 1464-1469.
GU Y M, WANG Y H, ZHAO S S, et al. N-donating and water-resistant Zn-carboxylate frameworks for humid carbon dioxide capture from flue gas [J]. Fuel, 2023, 336: 126793.
ZHANG Z Q, DENG Z Y, EVANS H A, et al. Exclusive recognition of CO2 from hydrocarbons by aluminum formate with hydrogen-confined pore cavities [J]. J Am Chem Soc, 2023, 145(21): 11643-11649.
HAYDEN A, EVANS D M, DENG Z Y, et al. Aluminum formate, Al(HCOO)3: An earth-abundant, scalable, and highly selective material for CO2 capture [J]. Sci Adv, 2022, 8: eade1473.
WANG Q, CHEN Y, LIU P X, et al. CO2 capture from high-humidity flue gas using a stable metal-organic framework [J]. Molecules, 2022, 27(17): 5608.
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构